Вывод формулы абсолютной погрешности

Вывод формулы абсолютной погрешности

Погрешности прямых измерений. Промах. Систематическая погрешность. Случайная погрешность. Полная погрешность. Погрешности косвенных измерений. Запись результата измерений

  1. Оценка погрешности прямых измерений

Измерить физическую величину – это значит сравнить ее с однородной величиной, принятой за единицу меры.

Различают прямые и косвенные измерения.

Если измеряемая величина непосредственно сравнивается с мерой, то измерения называются прямыми. Например, измерения линейных размеров тел с помощью масштабной линейки и т.д.

Если измеряется не сама искомая величина, а некоторые другие величины, связанные с ней функциональной зависимостью, то измерения называются косвенными. Например, измерения объема, ускорения и т.д.

Из-за несовершенства средств и методик измерения, органов чувств при любом измерении неизбежны отклонения результатов измерений от истинных величин. Эти отклонения называются погрешностями измерений.

Погрешности измерений делятся на систематические, случайные и промахи.

1.1. Промахи, связанные с неправильными отсчетами по прибору, неправильными записями и т.д., приводят к очень большой по абсолютной величине погрешности. Они, как правило, не укладываются в общую закономерность измеренных величин. Обнаруженный промах следует отбросить.

1.2. Систематическими погрешностями Δxсист называются погрешности, которые сохраняются при повторных измерениях одной и той же величины x или изменяются по определенному закону.

Систематические погрешности подразделяются на несколько групп. Отметим только приборную погрешность.

Систематическая приборная погрешность определяется по классу точности прибора, который указывается на приборе следующими цифрами: 0,01; 0,02; 0,05; 1,0; 2,5; 4,0. Класс точности показывает предельно допустимое значение систематической погрешности, выраженной в процентах от верхнего предела на выбранном диапазоне измерений. Например, предел измерения вольтметра с классом точности 0,5 равен 200 В. Систематическая погрешность равна 0,5% от 200В. Следовательно, систематическая погрешность вольтметра равна 1 В.

Если на приборе класс точности не указан, то погрешность равна половине цены наименьшего деления шкалы прибора.

1.3. Случайными называются погрешности, которые изменяются беспорядочно при повторных измерениях одной и той же физической величины при одинаковых условиях.

Оценим случайную погрешность. Пусть при измерении какой-либо физической величины было произведено N измерений и были получены значения x1, x2, … xN. Тогда наиболее вероятным значением измеряемой величины является ее среднее арифметическое значение

Результаты измерений x1, x2, … xN «рассеиваются» вокруг среднего. В качестве меры «рассеяния» результатов наблюдения вокруг среднего служит среднее квадратичное отклонение

Пусть a будет истинным, но неизвестным значением измеряемой величины x. Доказано, что вероятность попадания результатов измерения величины x в интервал значений от (aS) до (a + S) оказывается равной α = 0,68.

Вероятность попадания результатов наблюдений в более широкие интервалы (a – 2S, a + 2S) и (a – 3S, a + 3S) равна α = 0,95 и α = 0,99 соответственно.

Вероятность попадания в заданный интервал значений величины x называется доверительной вероятностью, а сам интервал – доверительным интервалом.

Однако, таким образом полученный доверительный интервал справедлив при большом значении N. В учебных лабораториях, как правило, приходится ограничиваться небольшим числом измерений. В этом случае доверительный интервал находят с помощью коэффициента Стьюдента, который зависит от числа измерений N и доверительной вероятности α. В таблице 1 приведены коэффициенты Стьюдента для различного числа наблюдений при доверительных вероятностях α = 0,68; 0,95; 0,99.

Погрешность измерения — отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения.

Выяснить с абсолютной точностью истинное значение измеряемой величины, как правило, невозможно, поэтому невозможно и указать величину отклонения измеренного значения от истинного. Это отклонение принято называть ошибкой измерения. (В ряде источников, например в Большой советской энциклопедии, термины ошибка измерения и погрешность измерения используются как синонимы, но согласно рекомендации РМГ 29-99 термин ошибка измерения не рекомендуется применять как менее удачный, а РМГ 29-2013 его вообще не упоминает [1] ). Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. На практике вместо истинного значения используют действительное значение величины хд , то есть значение физической величины, полученное экспериментальным путём и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него [1] . Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T = 2,8 ± 0,1 с означает, что истинное значение величины T лежит в интервале от 2,7 с до 2,9 с с некоторой оговорённой вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка, предел погрешности).

Читайте также:  Css div друг за другом

Содержание

Оценка погрешности [ править | править код ]

В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.

  • Часто для оценки случайной погрешности используют стандартное отклонение, или среднеквадратическое отклонение, для которого обычно используют один из двух способов оценки (оба термина применяются как к одному, так и к другому способу):
  • На основании несмещённой оценки дисперсии: S = ∑ i = 1 n ( x i − x ¯ ) 2 n − 1 <displaystyle S=left.<sqrt <frac <sum _^(x_-<ar >)^<2>>>>
    ight.>
  • На основании смещённой оценки дисперсии: S x = S n − 1 n = ∑ i = 1 n ( x i − x ¯ ) 2 n <displaystyle S_=<frac >><sqrt >>=<sqrt <frac <sum _^<(x_-<ar >)^<2>>>>>>
  • Метод Корнфельда заключается в выборе доверительного интервала в пределах от минимального до максимального результата измерений, и погрешность оценивается как половина разности между максимальным и минимальным результатом измерения:
  • Δ x = x max − x min 2 . <displaystyle Delta x=<frac -x_<min >><2>>.>

    Классификация погрешностей [ править | править код ]

    По форме представления [ править | править код ]

    Абсолютная погрешность — Δ X <displaystyle Delta X> является оценкой абсолютной ошибки измерения. Вычисляется разными способами. Способ вычисления определяется распределением случайной величины X meas <displaystyle X_< extrm >> (“meas” от “measured” — измеренное). Соответственно, величина абсолютной погрешности в зависимости от распределения случайной величины X meas <displaystyle X_< extrm >> может быть различной. Если X meas <displaystyle X_< extrm >> — измеренное значение, а X true <displaystyle X_< extrm >> — истинное значение, то неравенство |X_< extrm >-X_< extrm >|>"> Δ X > | X meas − X true | <displaystyle Delta X>|X_< extrm >-X_< extrm >|> |X_< extrm >-X_< extrm >|>"/> должно выполняться с некоторой вероятностью, близкой к 1. Если случайная величина X meas <displaystyle X_< extrm >> распределена по нормальному закону, то обычно за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

    Существует несколько способов записи величины вместе с её абсолютной погрешностью [2] :

    1. Явное указание погрешности. Например, mS = 100,02147 г с погрешностью uc = 0,35 мг.
    2. Запись в скобках погрешности последних цифр: mS = 100,02147(35) г. Для экспоненциальной записи в скобках указывается погрешность последних цифр мантиссы.
    3. Запись погрешности в скобках с абсолютным значением: mS = 100,02147(0,00035) г.
    4. Запись со знаком ±: 100,02147±0,00035 г. Такая запись рекомендуется стандартом JCGM 100:2008 в случае, если значение погрешности не относится к доверительному интервалу (т.е. если оценка строгая).

    Запись со знаком ± зачастую может интерпретироваться как строгая, то есть, например что при 100 ± 5 значение гарантированно лежит в интервале от 95 до 105. Но научная запись подразумевает не это, а то, что величина скорее всего лежит в указанном интервале с некоторым стандартным отклонением [3] [4] .

    Относительная погрешность измерения — отношение абсолютной погрешности измерения к опорному значению измеряемой величины, в качестве которого может выступать, в частности, её истинное или действительное значение: δ x = Δ x x true <displaystyle delta _=<frac <Delta x>>>>> , δ x = Δ x x ¯ <displaystyle delta _=<frac <Delta x><ar >>> .

    Относительная погрешность является безразмерной величиной; её численное значение может указываться, например, в процентах.

    Приведённая погрешность — это отношение максимально возможной абсолютной погрешности к нормирующему значению:

    γ = Δ x max x N <displaystyle gamma =<frac <Delta x_< extrm >>>>>>

    Так же как и относительная, является безразмерной величиной; её численное значение может указываться, например, в процентах.

    По причине возникновения [ править | править код ]

    • Инструментальные / приборные погрешности — погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировкишкалы, ненаглядностью прибора.
    • Теоретические — погрешности, возникающие из-за неверных теоретических предпосылок при измерениях.
    • Методические погрешности — погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
    • Субъективные / операторные / личные погрешности — погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.

    В технике применяют приборы для измерения лишь с определённой заранее заданной точностью — основной погрешностью, допускаемой в нормальных условиях эксплуатации для данного прибора. В различных областях науки и техники могут подразумеваться различные стандартные (нормальные) условия (например, Национальный институт стандартов и технологий США за нормальную температуру принимает 20 °C, а за нормальное давление — 101,325 кПа ); кроме того, для прибора могут быть определены специфические требования (например, нормальное рабочее положение). Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора — например, температурная (вызванная отклонением температуры окружающей среды от нормальной), установочная (обусловленная отклонением положения прибора от нормального рабочего положения), и т. п.

    Читайте также:  Как подключить роутер асус к ростелеком

    Обобщённой характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведённых основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)×10 n , где показатель степени n = 1; 0; −1; −2 и т. д.

    По характеру проявления [ править | править код ]

    Случайная погрешность — составляющая погрешности измерения, изменяющаяся случайным образом в серии повторных измерений одной и той же величины, проведенных в одних и тех же условиях. В появлении таких погрешностей не наблюдается какой-либо закономерности, они обнаруживаются при повторных измерениях одной и той же величины в виде некоторого разброса получаемых результатов. Случайные погрешности неизбежны, неустранимы и всегда присутствуют в результате измерения, однако их влияние обычно можно устранить статистической обработкой. Описание случайных погрешностей возможно только на основе теории случайных процессов и математической статистики.

    Математически случайную погрешность, как правило, можно представить белым шумом: как непрерывную случайную величину, симметричную относительно нуля, независимо реализующуюся в каждом измерении (некоррелированную по времени).

    Основным свойством случайной погрешности является возможность уменьшения искажения искомой величины путём усреднения данных. Уточнение оценки искомой величины при увеличении количества измерений (повторных экспериментов) означает, что среднее случайной погрешности при увеличении объёма данных стремится к 0 (закон больших чисел).

    Часто случайные погрешности возникают из-за одновременного действия многих независимых причин, каждая из которых в отдельности слабо влияет на результат измерения. По этой причине часто полагают распределение случайной погрешности «нормальным» (см. Центральная предельная теорема). «Нормальность» позволяет использовать в обработке данных весь арсенал математической статистики.

    Однако априорная убежденность в «нормальности» на основании Центральной предельной теоремы не согласуется с практикой — законы распределения ошибок измерений весьма разнообразны и, как правило, сильно отличаются от нормального.

    Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т. п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления).

    Систематическая погрешность — погрешность, изменяющаяся во времени по определённому закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т. п.), неучтёнными экспериментатором.

    Систематическую ошибку нельзя устранить повторными измерениями. Её устраняют либо с помощью поправок, либо «улучшением» эксперимента.

    Прогрессирующая (дрейфовая) погрешность — непредсказуемая погрешность, медленно меняющаяся во времени. Обусловлена она нарушениями статистической устойчивости.

    Грубая погрешность (промах) — погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора или если произошло замыкание в электрической цепи).

    Надо отметить, что деление погрешностей на случайные и систематические достаточно условно. Например, ошибка округления при определённых условиях может носить характер как случайной, так и систематической ошибки.

    По способу измерения [ править | править код ]

    Погрешность прямых измерений [ источник не указан 1250 дней ] вычисляется по формуле

    Δ x = ( t ) 2 + ( A ) 2 <displaystyle Delta x=<sqrt <(t)^<2>+(A)^<2>>>>

    • t = S x t α , ( N − 1 ) <displaystyle t=S_t_<alpha ,(N-1)>>:
    • S x <displaystyle S_>— стандартная ошибка среднего (выборочное СКО, деленное на корень из количества измерений N <displaystyle N>);
    • t α , ( N − 1 ) <displaystyle t_<alpha ,(N-1)>>— квантиль распределения Стьюдента для числа степеней свободы ( N − 1 ) <displaystyle (N-1)>и уровня значимости α <displaystyle alpha >;
    Читайте также:  Как файл txt перевести в pdf
  • A <displaystyle A>— абсолютная погрешность средства измерения (обычно это число, равное половине цены деления измерительного прибора) [источник не указан 1250 дней] .
  • Погрешность косвенных воспроизводимых измерений — погрешность вычисляемой (не измеряемой непосредственно) величины. Если F = F ( x 1 , x 2 . . . x n ) <displaystyle F=F(x_<1>,x_<2>. x_)> , где x i <displaystyle x_> — непосредственно измеряемые независимые величины, имеющие погрешность Δ x i <displaystyle Delta x_> , то:

    Δ F = ∑ i = 1 n ( Δ x i ∂ F ∂ x i ) 2 <displaystyle Delta F=<sqrt <sum _^left(Delta x_<frac <partial F><partial x_>>
    ight)^<2>>>>

    Погрешность косвенных невоспроизводимых измерений вычисляется аналогично вышеизложенной формуле, но вместо x i <displaystyle x_> ставится значение, полученное в процессе расчётов.

    По зависимости от инерционности прибора [ править | править код ]

    • Статическая — погрешность системы измерения, возникающая при измерении неизменной во времени физической величины.
    • Динамическая — погрешность системы измерения, возникающая при измерении переменной физической величины, обусловленная несоответствием реакции системы измерения на скорость изменения измеряемой физической величины.

    По зависимости от входной величины [ править | править код ]

    • Аддитивная — погрешность, независящая от чувствительности прибора и являющаяся постоянной для всех значений входящей величины в пределах диапазона измерений.
    • Мультипликативная — погрешность, зависящая от чувствительности прибора и меняющаяся пропорционально к текущему значению входной величины.

    Погрешность измерения и принцип неопределенности Гейзенберга [ править | править код ]

    Принцип неопределенности Гейзенберга устанавливает предел точности одновременного определения пары наблюдаемых физических величин, характеризующих квантовую систему, описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Таким образом, из аксиом квантовой механики следует принципиальная невозможность одновременного определения с абсолютной точностью некоторых физических величин. Этот факт накладывает серьёзные ограничения на применимость понятия «истинное значение физической величины».

    Чтобы найти погрешность косвенных измерений, надо воспользоваться формулами, приведенными в таблице. Эти формулы могут быть выведены "методом границ".

    Сначала надо вспомнить основные понятия теории погрешности.

    Абсолютная погрешность физической величины ΔА — это разница между точным значением физической величины и ее приближенным значением и измеряется в тех же единицах, что и сама величина:

    Так как мы никогда не знаем точного значения величины А, а лишь определяем из опыта ее приближенное значение, то и величину абсолютной погрешности мы можем определить лишь при­бли­зи­тель­но. Наиболее просто находится максимальная величина абсолютной погрешности, которая и используется нами в лабораторных работах.

    Относительная погрешность измерения εА равна:

    При косвенных измерениях величину погрешности искомой величины вычисляют по формулам:

    В случае, когда искомая величина находится по формуле, в которой в основном присутствуют произведение и частное, удобней находить сначала относительную погрешность. Если при этом один из множителей представляет собой сумму или разность, нужно предварительно найти его абсолютную погрешность (сложением абсолютных погрешностей слагаемых), а затем относительную.

    Зная относительную погрешность, найти абсолютную погрешность измерений можно так:

    «Правило ничтожных погрешностей»

    при суммировании погрешностей любым из слагаемых можно пренебречь, если оно не превосходит ⅓ – ⅟ 4 от другого.

    Запись результата с указанием погрешности.

    Абсолютная погрешность измерений обычно округляется до 1 значащей цифры, а, если эта цифра 1, то до двух.

    Результат записывается в виде:

    А = Аизм ± ΔА, например: ℓ = (13 ± 2) мм.

    При этом в измеренном значении следует оставлять столько десятичных знаков, сколько их в значении погрешности (последняя цифра погрешности «поправляет» последнюю цифру измеренного значения) . Значение величины и погрешность следует выражать в одних и тех же единицах!

    Пример оценки погрешностей косвенных измерений № 1

    Пример оценки погрешностей косвенных измерений № 2

    Задания для самостоятельного решения

    Задание 1. Найдите плотность вещества, из которого сделан куб со стороной 7,00 ± 0,15 см, если его масса 847 ± 2 г. Что это за вещество?

    Задание 2. Найдите удельную теплоту сгорания топлива, 2,10 ± 0,15 г которого хватило, чтобы нагреть 400 ± 10 мл воды на 35°С ± 2°С. Что это за топливо?

    © Ивашкина Д.А., 2017. Публикация материалов с сайта разрешена только при наличии активной ссылки на главную страницу.

    Ссылка на основную публикацию
    Возврат тмз поставщику в 1с
    Причин возврата товара поставщику в 1С 8.3 (как и в 1С 8.2) может быть множество. К ним относятся брак, просроченная...
    Ввод размера массива с клавиатуры c
    Язык Си. Требуется реализовать: с клавиатуры вводится натуральное число N, а затем задается массив размера N Однако получаю ошибку: "IntelliSense:...
    Ввод списка в python с клавиатуры
    Ввод данных с клавиатуры осуществляется с помощью функции input(). После выполнения данной функции программа ожидает ввода данных и после нажатия...
    Возможно ли восстановить фотографии удаленные с телефона
    Время нещадно движется вперед, и то, что раньше было необычным и пользовалось большим спросом, сегодня уходит в Лету, освобождая место...
    Adblock detector