Кто создал первую интегральную схему

Кто создал первую интегральную схему

12 сентября 1958 года сотрудник фирмы Texas Instruments (TI) Джек Килби продемонстрировал руководству странный прибор — склеенный пчелиным воском на стеклянной подложке устройство из двух кусочков кремния размером 11,1х1,6 мм. Это был объёмный макет – прототип интегральной схемы (ИС) генератора, доказывающий возможность изготовления всех элементов схемы на основе одного полупроводникового материала. Эта дата отмечается в истории электроники как день рождения интегральных схем.

К интегральным схемам (микросхемам, ИС) относятся электронные устройства различной сложности, в которых все однотипные элементы изготавливаются одновременно в едином технологическом цикле, т.е. по интегральной технологии. В отличие от печатных плат (в которых в едином цикле по интегральной технологии одновременно изготавливаются все соединительные проводники) в ИС аналогично формируются и резисторы, и конденсаторы, и диоды и транзисторы. Кроме того, одновременно изготавливается много ИС, от десятков, до тысяч

Раньше различали две группы ИС: гибридные и полупроводниковые

В гибридных ИС (ГИС) на поверхности подложки микросхемы (как правило, из керамики) по интегральной технологии формируются все проводники и пассивные элементы. Активные элементы в виде бескорпусных диодов, транзисторов и кристаллов полупроводниковых ИС, устанавливаются на подложку индивидуально, вручную или автоматами

В полупроводниковых ИС соединительные, пассивные и активные элементы формируются в едином технологическом цикле на поверхности полупроводникового материала с частичным вторжением в его объём методами диффузии. Одновременно на одной пластине полупроводника изготавливается от нескольких десятков до нескольких тысяч ИС

Первые гибридные ИС.

ГИС является продуктом эволюционного развития микромодулей и технологии монтажа на керамических платах. Поэтому появились они незаметно, общепринятой даты рождения ГИС и общепризнанного автора не существует

Полупроводниковые ИС были естественным и неизбежным результатом развития полупроводниковой техники, но потребовавшим генерации новых идей и создания новой технологии, у которых есть и свои даты рождения, и свои авторы

Первые гибридные и полупроводниковые ИС появились в СССР и США почти одновременно и независимо друг от друга

Еще в конце 1940-х годов в фирме Centralab в США были разработаны основные принципы изготовления толстоплёночных печатных плат на керамической основе

А в начале 1950-х годов в фирме RCA изобрели тонкоплёночную технологию: распыляя в вакууме различные материалы и осаждая их через маску на специальные подложки, научились на единой керамической подложке одновременно изготавливать множество миниатюрных плёночных соединительных проводников, резисторов и конденсаторов

По сравнению с толстоплёночной, тонкоплёночная технология обеспечивала возможность более точного изготовления элементов топологии меньших размеров, но требовала более сложного и дорогостоящего оборудования. Устройства, изготавливаемые на керамических платах по толстоплёночной или тонкоплёночной технологии, получили название “гибридные схемы”

Но гибридной интегральной схемой микромодуль стал в тот момент, когда в нём применили бескорпусные транзисторы и диоды и герметизировали конструкцию в общем корпусе

В СССР

Первые ГИС (модули типа “Квант” позже получившие обозначение ИС серии 116) в СССР были разработаны в 1963 г. в НИИРЭ (позже НПО “Ленинец”, Ленинград) и в том же году его опытный завод начал их серийное производство. В этих ГИС в качестве активных элементов использовались полупроводниковые ИС “Р12-2” , разработанные в 1962 г. Рижским заводом полупроводниковых приборов

Бесспорно, модули “Квант” были первыми в мире ГИС с двухуровневой интеграцией – в качестве активных элементов в них использовались не дискретные бескорпусные транзисторы, а полупроводниковые ИС

В США

Появление толстоплёночных ГИС, как основной элементной базы новой ЭВМ IBM System /360, впервые было анонсировано корпорации IBM в 1964 г

Полупроводниковые ИС серий “Micrologic” фирмы Fairchild и «SN-51" фирмы TI были ещё недоступно редки и непозволительно дороги для коммерческого применения, построение большой ЭВМ. Поэтому корпорация IBM, взяв за основу конструкцию плоского микромодуля, разработала свою серию толстоплёночных ГИС, анонсированную под общим названием (в отличие от “микромодулей”) – “SLT-модули” ( Solid Logic Technology – технология цельной логики. Обычно слово “solid ” переводят на русский язык как “твёрдый”, что абсолютно нелогично. Действительно, термин “SLT-модули” был введен IBM как противопоставление термину “микромодуль” и должен отражать их отличие. У слова “solid” есть и другие значения – “сплошной”, “целый”, которые удачно подчеркивают различие “SLT-модулей” и “микромодулей”

SLT-модуль представлял собой квадратную керамическую толстоплёночную микроплатку с впрессованными вертикальными штыревыми выводами. На её поверхность методом шелкографии наносились соединительные проводники и резисторы, и устанавливались бескорпусные транзисторы. Конденсаторы, при необходимости, устанавливались рядом с SLT-модулем

При внешней почти идентичности (микромодули несколько повыше) SLT-модули от плоских микромодулей отличались более высокой плотностью компоновки элементов, низким энергопотреблением, высоким быстродействием и высокой надёжностью

Кроме того, SLT-технология достаточно легко автоматизировалась, следовательно их можно было выпускать достаточно низкой для применения в коммерческой аппаратуре стоимости. Именно это IBM и было нужно. Вслед за IBM ГИС начали выпускать и другие фирмы, для которых ГИС стала товарной продукцией.

7 мая 1952 года британский радиотехник Джеффри Даммер (англ.) русск. впервые выдвинул идею интеграции множества стандартных электронных компонентов в монолитном кристалле полупроводника, а год спустя Харвик Джонсон подал первую в истории патентную заявку на прототип интегральной схемы (ИС) . Реализация этих предложений в те годы не могла состояться из-за недостаточного развития технологий.

В конце 1958 года и в первой половине 1959 года в полупроводниковой промышленности состоялся прорыв. Три человека, представлявшие три частные американские корпорации, решили три фундаментальные проблемы, препятствовавшие созданию интегральных схем. Джек Килби из Texas Instruments запатентовал принцип интеграции, создал первые, несовершенные, прототипы ИС и довёл их до серийного выпуска . Курт Леговец из Sprague Electric Company изобрёл способ электрической изоляции компонентов, сформированых на одном кристалле полупроводника (изоляцию p-n-переходом (англ.) русск. ). Роберт Нойс из Fairchild Semiconductor изобрёл способ электрического соединения компонентов ИС (металлизацию алюминием) и предложил усовершенствованный вариант изоляции компонентов на базе новейшей планарной технологии Жана Эрни (англ.) русск. . 27 сентября 1960 года группа Джея Ласта (англ.) русск. создала на Fairchild Semiconductor первую работоспособную полупроводниковую ИС по идеям Нойса и Эрни. Texas Instruments, владевшая патентом на изобретение Килби, развязала против конкурентов патентную войну, завершившуюся в 1966 году мировым соглашением о перекрёстном лицензировании технологий.

Ранние логические ИС упомянутых серий строились буквально из стандартных компонентов, размеры и конфигурации которых были заданы технологическим процессом. Схемотехники, проектировавшие логические ИС конкретного семейства, оперировали одними и теми же типовыми диодами и транзисторами. В 1961—1962 парадигму проектирования сломал ведущий разработчик Sylvania Том Лонго, впервые использовав в одной ИС различные конфигурации транзисторов в зависимости от их функций в схеме. В конце 1962 Sylvania выпустила в продажу первое семейство разработаной Лонго транзисторно-транзисторной логики (ТТЛ) — исторически первый тип интегральной логики, сумевший надолго закрепиться на рынке. В аналоговой схемотехнике прорыв подобного уровня совершил в 1964—1965 годах разработчик операционных усилителей Fairchild Боб Видлар.

Читайте также:  Как создать биткоин кошелек на телефоне

Первая в СССР полупроводниковая интегральная микросхема была создана на основе планарной технологии, разработанной в начале 1960 года в НИИ-35 (затем переименован в НИИ «Пульсар») коллективом, который в дальнейшем был переведён в НИИМЭ («Микрон»). Создание первой отечественной кремниевой интегральной схемы было сконцентрировано на разработке и производстве с военной приёмкой серии интегральных кремниевых схем ТС-100 (37 элементов — эквивалент схемотехнической сложности триггера, аналога американских ИС серии SN-51 фирмы Texas Instruments). Образцы-прототипы и производственные образцы кремниевых интегральных схем для воспроизводства были получены из США. Работы проводились в НИИ-35 (директор Трутко) и Фрязинским полупроводниковым заводом (директор Колмогоров) по оборонному заказу для использования в автономном высотомере системы наведения баллистической ракеты. Разработка включала шесть типовых интегральных кремниевых планарных схем серии ТС-100 и с организацией опытного производства заняла в НИИ-35 три года (с 1962 по 1965 год). Ещё два года ушло на освоение заводского производства с военной приёмкой во Фрязино (1967 год) [2] .

Уровни проектирования

  • Логический — логическая схема (логические инверторы, элементы ИЛИ-НЕ, И-НЕ и т. п.).
  • Схемо- и системотехнический уровень — схемо- и системотехнические схемы (триггеры, компараторы, шифраторы, дешифраторы, АЛУ и т. п.).
  • Электрический — принципиальная электрическая схема (транзисторы, конденсаторы, резисторы и т. п.).
  • Физический — методы реализации одного транзистора (или небольшой группы) в виде легированных зон на кристалле.
  • Топологический — топологические фотошаблоны для производства. [Прим. 1]
  • Программный уровень — позволяет программисту программировать (для ПЛИС, микроконтроллеров и микропроцессоров) разрабатываемую модель используя виртуальную схему.

В настоящее время большая часть интегральных схем проектируется при помощи специализированных САПР, которые позволяют автоматизировать и значительно ускорить производственные процессы, например, получение топологических фотошаблонов.

Классификация

Степень интеграции

В зависимости от степени интеграции применяются следующие названия интегральных схем:

  • малая интегральная схема (МИС) — до 100 элементов в кристалле,
  • средняя интегральная схема (СИС) — до 1000 элементов в кристалле,
  • большая интегральная схема (БИС) — до 10000 элементов в кристалле,
  • сверхбольшая интегральная схема (СБИС) — более 10 тысяч элементов в кристалле.

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) — до 1 миллиарда элементов в кристалле и гигабольшая интегральная схема (ГБИС) — более 1 миллиарда элементов в кристалле, но в настоящее время название УБИС и ГБИС практически не используется (например, последние версии процессоров Itanium, 9300 Tukwila, содержат два миллиарда транзисторов), и все схемы с числом элементов, превышающим 10 000, относят к классу СБИС.

Технология изготовления

  • Полупроводниковая микросхема — все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия, оксид гафния).
  • Плёночная интегральная микросхема — все элементы и межэлементные соединения выполнены в виде плёнок:
  • толстоплёночная интегральная схема;
  • тонкоплёночная интегральная схема.
  • Гибридная микросхема (также микросборка) — кроме полупроводникового кристалла содержит несколько бескорпусных диодов, транзисторов и(или) других электронных компонентов, помещённых в один корпус.
  • Смешанная микросхема — кроме полупроводникового кристалла содержит тонкоплёночные (толстоплёночные) пассивные элементы, размещённые на поверхности кристалла.
  • Вид обрабатываемого сигнала

    • Аналоговые.
    • Цифровые.
    • Аналого-цифровые.

    Аналоговые микросхемы — входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.

    Цифровые микросхемы — входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определённый диапазон напряжения. Например, для микросхем типа ТТЛ при напряжении питания +5 В диапазон напряжения 0…0,4 В соответствует логическому нулю, а диапазон 2,4…5 В — логической единице; а для микросхем ЭСЛ-логики при напряжении питания −5,2 В диапазон −0,8…−1,03 В — логической единице, а −1,6…−1,75 В — логическому нулю.

    Аналого-цифровые микросхемы совмещают в себе формы цифровой и аналоговой обработки сигналов.

    Технологии изготовления

    Типы логики

    Основным элементом аналоговых микросхем являются транзисторы (биполярные или полевые). Разница в технологии изготовления транзисторов существенно влияет на характеристики микросхем. Поэтому нередко в описании микросхемы указывают технологию изготовления, чтобы подчеркнуть тем самым общую характеристику свойств и возможностей микросхемы. В современных технологиях объединяют технологии биполярных и полевых транзисторов, чтобы добиться улучшения характеристик микросхем.

    • Микросхемы на униполярных (полевых) транзисторах — самые экономичные (по потреблению тока):
    • МОП-логика (металл-оксид-полупроводник логика) — микросхемы формируются из полевых транзисторов n-МОП или p-МОП типа;
    • КМОП-логика (комплементарная МОП-логика) — каждый логический элемент микросхемы состоит из пары взаимодополняющих (комплементарных) полевых транзисторов (n-МОП и p-МОП). Существует также смешанная технология BiCMOS.
  • Микросхемы на биполярных транзисторах:
    • РТЛ — резисторно-транзисторная логика (устаревшая, заменена на ТТЛ);
    • ДТЛ — диодно-транзисторная логика (устаревшая, заменена на ТТЛ);
    • ТТЛ — транзисторно-транзисторная логика — микросхемы сделаны из биполярных транзисторов с многоэмиттерными транзисторами на входе;
    • ТТЛШ — транзисторно-транзисторная логика с диодами Шоттки — усовершенствованная ТТЛ, в которой используются биполярные транзисторы с эффектом Шоттки;
    • ЭСЛ — эмиттерно-связанная логика — на биполярных транзисторах, режим работы которых подобран так, чтобы они не входили в режим насыщения, — что существенно повышает быстродействие;
    • ИИЛ — интегрально-инжекционная логика.
    • КМОП и ТТЛ (ТТЛШ) технологии являются наиболее распространёнными логиками микросхем. Где необходимо экономить потребление тока, применяют КМОП-технологию, где важнее скорость и не требуется экономия потребляемой мощности применяют ТТЛ-технологию. Слабым местом КМОП-микросхем является уязвимость к статическому электричеству — достаточно коснуться рукой вывода микросхемы и её целостность уже не гарантируется. С развитием технологий ТТЛ и КМОП микросхемы по параметрам сближаются и, как следствие, например, серия микросхем 1564 — сделана по технологии КМОП, а функциональность и размещение в корпусе как у ТТЛ технологии.

      Микросхемы, изготовленные по ЭСЛ-технологии, являются самыми быстрыми, но и наиболее энергопотребляющими, и применялись при производстве вычислительной техники в тех случаях, когда важнейшим параметром была скорость вычисления. В СССР самые производительные ЭВМ типа ЕС106х изготавливались на ЭСЛ-микросхемах. Сейчас эта технология используется редко.

      Технологический процесс

      При изготовлении микросхем используется метод фотолитографии (проекционной, контактной и др.), при этом схему формируют на подложке (обычно из кремния), полученной путём резки алмазными дисками монокристаллов кремния на тонкие пластины. Ввиду малости линейных размеров элементов микросхем, от использования видимого света и даже ближнего ультрафиолета при засветке отказались.

      В качестве характеристики технологического процесса производства микросхем указывают минимальные контролируемые размеры топологии фотоповторителя (контактные окна в оксиде кремния, ширина затворов в транзисторах и т. д.) и, как следствие, размеры транзисторов (и других элементов) на кристалле. Этот параметр, однако, находится во взаимозависимости с рядом других производственных возможностей: чистотой получаемого кремния, характеристиками инжекторов, методами фотолитографии, методами вытравливания и напыления.

      В 1970-х годах минимальный контролируемый размер составлял 2-8 мкм, в 1980-х он был уменьшен до 0,5-2 мкм. Некоторые экспериментальные образцы фотолитографического оборудования рентгеновского диапазона обеспечивали минимальный размер 0,18 мкм.

      В 1990-х годах, из-за нового витка «войны платформ», стали внедряться в производство и быстро совершенствоваться экспериментальные методы: в начале 1990-х процессоры (например, ранние Pentium и Pentium Pro) изготавливали по технологии 0,5-0,6 мкм (500—600 нм), потом технология дошла до 250—350 нм. Следующие процессоры (Pentium II, K6-2+, Athlon) уже делали по технологии 180 нм. В конце 1990-х фирма Texas Instruments создала ультрафиолетовую технологию с минимальным контролируемым размером около 80 нм.

      Читайте также:  Как улучшить древний предмет в diablo 3

      Следующие процессоры делали по УФ-технологии 45 нм (сперва это был Core 2 Duo). Другие микросхемы достигли и превзошли этот уровень (в частности, видеопроцессоры и флеш-память фирмы Samsung — 40 нм). В 2010 году в розничной продаже появились процессоры, разработанные по 32-нм тех. процессу. [3] [4] В апреле 2012 года в продажу поступили процессоры, разработанные по 22-нм тех. процессу (ими стали процессоры фирмы Intel, выполненные по архитектуре Ivy Bridge). [источник не указан 62 дня] Процессоры с технологией 14 нм планируется к внедрению в 2014 году, а 10 нм — около 2018 года. [источник не указан 62 дня]

      Контроль качества

      Для контроля качества интегральных микросхем широко применяют так называемые тестовые структуры.

      Назначение

      Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом — вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

      Аналоговые схемы

      • Операционные усилители.
      • Компараторы.
      • Генераторы сигналов.
      • Фильтры (в том числе на пьезоэффекте).
      • Аналоговые умножители.
      • Аналоговые аттенюаторы и регулируемые усилители.
      • Стабилизаторы источников питания: стабилизаторы напряжения и тока.
      • Микросхемы управления импульсных блоков питания.
      • Преобразователи сигналов.
      • Схемы синхронизации.
      • Различные датчики (например, температуры).

      Цифровые схемы

      • Логические элементы
      • Триггеры
      • Счётчики
      • Регистры
      • Буферные преобразователи
      • Шифраторы
      • Дешифраторы
      • Цифровой компаратор
      • Мультиплексоры
      • Демультиплексоры
      • Сумматоры
      • Полусумматоры
      • Ключи
      • АЛУ
      • Микроконтроллеры
      • (Микро)процессоры (в том числе ЦП для компьютеров)
      • Однокристальные микрокомпьютеры
      • Микросхемы и модули памяти
      • ПЛИС (программируемые логические интегральные схемы)

      Цифровые интегральные микросхемы имеют ряд преимуществ по сравнению с аналоговыми:

      • Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» — что соответствует сигналу высокого уровня (1), либо «закрыт» — (0), в первом случае на транзисторе нет падения напряжения, во втором — через него не идёт ток. В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (резистивном) состоянии.
      • Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например, 2,5-5 В) и низкого (0-0,5 В) уровня. Ошибка возможна при таких помехах, когда высокий уровень воспринимается как низкий и наоборот, что маловероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов, позволяющих исправлять ошибки.
      • Большое отличие сигналов высокого и низкого уровня и достаточно широкий интервал их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора и настройки цифровых устройств.

      Аналогово-цифровые схемы

      • цифро-аналоговые (ЦАП) и аналогово-цифровые преобразователи (АЦП).
      • Цифровые вычислительные синтезаторы (ЦВС).
      • Трансиверы (например, преобразователь интерфейса Ethernet).
      • Модуляторы и демодуляторы.
      • Радиомодемы
      • Декодеры телетекста, УКВ-радио-текста
      • Трансиверы Fast Ethernet и оптических линий
      • Dial-Up модемы
      • Приёмники цифрового ТВ
      • Сенсор оптической мыши
    • Преобразователи напряжения питания и другие устройства на переключаемых конденсаторах
    • Цифровые аттенюаторы.
    • Схемы фазовой автоподстройки частоты (ФАПЧ) с последовательным интерфейсом.
    • Коммутаторы.
    • Генераторы и восстановители частоты тактовой синхронизации
    • Базовые матричные кристаллы (БМК): содержит как аналоговые, так и цифровые первичные элементы.
    • Серии микросхем

      Аналоговые и цифровые микросхемы выпускаются сериями. Серия — это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

      Корпуса микросхем

      Микросхемы выпускаются в двух конструктивных вариантах — корпусном и бескорпусном.

      Корпус микросхемы — это несущая система и часть конструкции, предназначенная для защиты от внешних воздействий и для электрического соединения с внешними цепями посредством выводов. Корпуса стандартизованы для упрощения технологии изготовления готовых изделий.

      Бескорпусная микросхема — это полупроводниковый кристалл, предназначенный для монтажа в гибридную микросхему или микросборку (возможен непосредственный монтаж на печатную плату).

      Специфические названия микросхем

      Фирма Intel первой изготовила микросхему, которая выполняла функции микропроцессора (англ. microproccessor ) — Intel 4004. На базе усовершенствованных микропроцессоров 8088 и 8086 фирма IBM выпустила свои известные персональные компьютеры).

      Микропроцессор формирует ядро вычислительной машины, дополнительные функции, типа связи с периферией выполнялись с помощью специально разработанных наборов микросхем (чипсет). Для первых ЭВМ число микросхем в наборах исчислялось десятками и сотнями, в современных системах это набор из одной-двух-трёх микросхем. В последнее время наблюдаются тенденции постепенного переноса функций чипсета (контроллер памяти, контроллер шины PCI Express) в процессор.

      Микропроцессоры со встроенными ОЗУ и ПЗУ, контроллерами памяти и ввода-вывода, а также другими дополнительными функциями называют микроконтроллерами.

      Правовая защита

      Законодательство России предоставляет правовую охрану топологиям интегральных микросхем. Топологией интегральной микросхемы является зафиксированное на материальном носителе пространственно-геометрическое расположение совокупности элементов интегральной микросхемы и связей между ними (ст. 1448 ГК РФ).

      Автору топологии интегральной микросхемы принадлежат следующие интеллектуальные права: 1) исключительное право; 2) право авторства.

      Автору топологии интегральной микросхемы принадлежат также другие права, в том числе право на вознаграждение за использование служебной топологии.

      Исключительное право на топологию действует в течение десяти лет. Правообладатель в течение этого срока может по своему желанию зарегистрировать топологию в Федеральной службе по интеллектуальной собственности, патентам и товарным знакам. [5]

      Интересные факты

      В мае 2011 фирмой Altera была выпущена, по 28 нм техпроцессу, самая большая в мире микросхема, состоящая из 3,9 млрд транзисторов. [6]

      Создание интегральных микросхем

      Возможно, самым выдающимся изобретением за последние 50 лет было создание полупроводниковой микросхемы. Она была изобретена в 1959 г. американскими инженерами Д. Килби и Р. Нойсом, будущим основателем корпорации Intel. Независимо друг от друга, но практически одновременно, они предложили компоновать отдельные электронные элементы на общем (интегральном) основании, изготовленном из полупроводниковых материалов. В 1961 г. компания Fairchild Semiconductor, которую возглавлял Р. Нойс, первой в мире наладила коммерческое производство полупроводниковых микросхем, и с тех пор в электронной технике вместо большого числа транзисторов стали применяться микросхемы. Размеры электронных устройств резко уменьшились, появились новые функциональные возможности.

      Полупроводники – это вещества, по своей электропроводности занимающие промежуточное положение между металлами и изоляторами. В электронике используются в основном такие полупроводниковые материалы, как кремний, германий, арсенид галлия, селен. Носителями тока в них являются отрицательно заряженные свободные электроны, оторвавшиеся от своих атомных ядер; их количество сильно зависит от температуры. Пустые места, которые освобождают электроны, физики условно назвали «дырками». «Дырки» существуют очень недолго и постоянно меняют свое местоположение, потому что если «дырку» заполняет какой-либо электрон, «дырка» возникает в другом месте. Для удобства принято, что по свойствам «дырки» аналогичны электронам, только имеют положительный заряд и несколько бо?льшую массу. В идеальных кристаллах количество электронов и «дырок» одинаково, но если в кристалл полупроводника ввести примеси некоторых веществ, равенство нарушается. Преобладание электронов или «дырок» определяет тип проводимости («n» или «p» – negative или positive – электронная или «дырочная»).

      Читайте также:  Как читать электронные книги на телефоне

      Роберт Нойс – один из основателей фирмы Intel

      Если соединить два слоя полупроводников с разными типами проводимости, электроны смещаются из одного в другой, оставляя в первом «дырки». Между слоями с различными типами проводимости возникает так называемый запорный слой с повышенным электрическим сопротивлением, поскольку он обеднен носителями заряда, при этом свойствами запорного слоя можно управлять путем приложения к нему напряжения (а также светом). Напряжение одной полярности будет уменьшать сопротивление запорного слоя, напряжение другой полярности – увеличивать. Таким образом, двухслойную «p – n» структуру (диод) можно использовать для пропускания тока только в одном направлении, а сочетание двух «p – n» переходов в трехслойной структуре позволяет управлять величиной тока, протекающего через полупроводниковый прибор.

      Комбинация полупроводников с разными типами проводимости обладает и другими замечательными свойствами. Она может создавать э. д. с. (электродвижущую силу) при падении света на прибор либо, наоборот, излучать свет при прохождении тока определенной полярности, вырабатывать термоэлектричество, создавать разность температур на разных концах (эффект Пельтье).

      Широко распространены полупроводниковые датчики температуры, тензодатчики (датчики деформаций), датчики магнитного поля.

      Изобретенные в начале XX века ламповые диоды и триоды стали основой разнообразных электронных устройств – радиоприемников и передатчиков, усилителей, измерительных приборов и автоматики. Однако лампы, при всех их достоинствах (высокое качество ламповых усилителей звука, большая мощность ламповых передатчиков, отсутствие до недавнего времени альтернативы кинескопам и др.), имеют серьезные недостатки – большое потребление энергии, требуемой для разогрева катодов, большие габариты аппаратуры, выполненной на их основе, и недостаточную надежность. Кроме этого, любая электронная схема содержит многочисленные резисторы, конденсаторы, соединительные проводники, а также зачастую намоточные детали и механические узлы. Элементы соединяются между собой пайкой, иногда сваркой. Аппаратура была трудоемкой в изготовлении и дорогой.

      Попытки обойти эти недостатки оказались не слишком успешными, и вполне закономерно физики и инженеры стали искать иную элементную базу.

      В самом начале 20?х гг. началась эра твердотельных полупроводниковых приборов. Молодой физик О.В. Лосев разработал в Нижегородской радиолаборатории первый полупроводниковый диод – кристадин. Он успешно использовался для усиления и генерирования электрических колебаний. В дальнейшем появились диоды и других типов – выпрямительные, точечные, варикапы, стабилитроны, туннельные, фотодиоды, светодиоды и др.

      Физика твердого тела стала интенсивно развиваться. В нашей стране в ее развитие наибольший вклад внесла научная школа академика А.Ф. Иоффе.

      В 1948 г. американские изобретатели У. Шокли, У. Браттейн и Дж. Бардин создали новый усилительный полупроводниковый прибор – транзистор (триод) с токовым управлением, совершив коренной переворот в электронике. В результате использования полупроводниковых диодов и триодов резко уменьшились габариты аппаратуры и потребление энергии, повысилась надежность. Существует два варианта транзисторных структур – «p – n—p» и «n – p—n», их сочетание позволило резко упростить схемотехнику электронных устройств по сравнению с ламповыми конструкциями и в некоторых случаях избавиться от громоздких трансформаторов.

      В дальнейшем (Шокли, США, 1952 г. и Тезнер, Франция, 1958 г.) были созданы и другие типы многослойных полупроводниковых приборов – так называемые полевые транзисторы с управлением напряжением, по характеристикам схожие с электронными лампами и имеющие огромные коэффициенты усиления по мощности. В настоящее время управляемые электрическим полем MДП-структуры (металл – диэлектрик – полупроводник) являются «элементарными ячейками» интегральных цифровых микросхем.

      Были созданы также четырехслойные (тиристоры) и пятислойные (симисторы) приборы для работы в ключевом режиме в силовых цепях.

      Однако жизнь властно требовала дальнейшего совершенствования электронных устройств. Трудоемкость изготовления, материалоемкость и габариты были все еще слишком высоки. Переход на печатные платы позволил частично решить эти проблемы, но большое число отдельных электронных компонентов ставило свои ограничения. Нужно было сводить к минимуму количество паяных соединений, снижающих надежность, и длину соединительных проводников, снижающую быстродействие. От многочисленных резисторов и конденсаторов тоже необходимо было как-то избавляться, хотя бы частично.

      Развитие вычислительной техники поставило также задачу создания сверхминиатюрных ячеек памяти и логических элементов. Эта задача принципиально не могла быть решена вне рамок твердотельной технологии.

      Дальнейший прогресс электроники связан с использованием интегральных схем. Интегральная микросхема – это миниатюрный электронный прибор, элементы которого нераздельно связаны конструктивно и соединены между собой электрически. «Сердце» интегральной микросхемы – кристалл особо чистого полупроводникового материала (чаще всего кремния), в структуре которого произведены сложные целенаправленные изменения. Отдельные области кристалла становятся элементами сложной системы. К определенным точкам кристалла присоединяются выводы микросхемы (иногда их несколько десятков), которые припаиваются к печатной плате электронного устройства. В кристалле с помощью специальных методов (диффузия, напыление, травление и др.) создаются транзисторы (в современном микропроцессоре их многие миллионы), диоды, резисторы, конденсаторы (разумеется, в ограниченном диапазоне емкостей). Некоторые электронные компоненты невозможно ввести в интегральные микросхемы, поэтому, кроме микросхем, на печатных платах часто присутствуют намоточные узлы и конденсаторы большой емкости и специального назначения, разъемы, датчики и индикаторы, а также мощные полупроводниковые приборы.

      Существуют и пленочные микросхемы на керамической подложке, на которой формируют элементы путем осаждения различных материалов (алюминий, титан, титанат бария, оксид олова) в виде тонких пленок. Для получения интегральных схем с определенными функциями наносят многослойные структуры через трафареты. Между слоями создаются в нужных местах связи.

      Пленочные и полупроводниковые элементы могут располагаться в одном корпусе микросхемы (так называемая гибридная технология). Возможны и сочетания в одном корпусе, например, управляющей логической схемы и высоковольтного мощного ключевого транзистора для систем зажигания автомобильных двигателей. Вариантов гибридных схем множество.

      Естественно, изготовить современную интегральную микросхему возможно только на полностью автоматизированном оборудовании с управлением от компьютера. Более того, даже разработку топологии микросхемы уже невозможно выполнить без вычислительной техники – настолько она сложна.

      Все процессы изготовления интегральных микросхем требуют высококачественных материалов и точного оборудования, высочайшей культуры производства, стерильной чистоты.

      В настоящее время интегральные схемы широко используются в компьютерах, контрольно-измерительной аппаратуре, аппаратуре связи, бытовых радиоэлектронных приборах. Устройства, основанные на твердотельных и цифровых технологиях, успешно вытесняют традиционные устройства. Например, стали возможны часы, фотоаппарат и «магнитофон» без движущихся частей, плоский телеэкран. Микрочипы «зашивают» даже в документы и вживляют под кожу. Возможности микроэлектроники поистине необозримы.

      Плотность размещения элементов в микросхемах становится все больше, так как размеры элементов постоянно уменьшаются, их уже нельзя измерить в микрометрах. На повестке дня – нанотехнологии.

      Ссылка на основную публикацию
      Adblock detector