Коэффициент сопротивления движения обозначение

Коэффициент сопротивления движения обозначение

В общем случае коэффициентом сопротивления движению тела по опорной поверхности называется отношение сил, препятствующих этому движению, к весу тела. Следовательно, коэффициент сопротивления движению позволяет учесть потери энергии при перемещении тела на данном участке.

В зависимости от природы действующих сил в экспертной практике пользуются различными понятиями коэффициента сопротивления движению.

Коэффициентом сопротивления качению — ƒ называют отношение силы сопротивления движению при свободном качении транспортного средства в горизонтальной плоскости к его весу.

На величину коэффициента ƒ, помимо типа и состояния дорожного покрытия, оказывает влияние целый ряд других факторов (например, давление в шинах, рисунок протектора, конструкция подвески, скорость и др.), поэтому более точное значение коэффициента ƒ может быть определено в каждом случае экспериментальным путем.

Потеря энергии при перемещении по поверхности дороги различных объектов, отброшенных при столкновении (наезде), определяется коэффициентом сопротивления движению ƒg. Зная величину этого коэффициента и расстояние, на которое переместилось тело по поверхности дороги, можно установить его первоначальную скорость, после чего во многих случаях.

Значение коэффициента ƒ можно приближенно определить по таблице 3[5].

Дорожное покрытие Коэффициент, ƒ
Цемент и асфальтобетон в хорошем состоянии 0,014—0,018
Цемент и асфальтобетон в удовлетворительном состоянии 0,018—0,022
Щебенка, гравий с обработкой вяжущими материалами, в хорошем состоянии 0,020—0,025
Щебенка, гравий без обработки, с небольшими выбоинами 0,030—0,040
Брусчатка 0,020—0,025
Булыжник 0,035—0,045
Грунт плотный, ровный, сухой 0,030—0,060
Грунт неровный и грязный 0,050—0,100
Песок влажный 0,080—0,100
Песок сухой 0,150—0,300
Лед 0,018—0,020
Снежная дорога 0,025—0,030

Как правило, при перемещении отброшенных при столкновении (наезде) объектов движение их тормозится неровностями дороги, острые кромки их врезаются в поверхность покрытия и т.п. Учесть влияние всех этих факторов на величину силы сопротивления движению конкретного объекта не представляется возможным, поэтому значение коэффициента сопротивления движению ƒg может быть найдено лишь экспериментальным путем.

Следует помнить, что при падении тела с высоты в момент удара гасится часть кинетической энергии поступательного движения за счет прижатия тела к поверхности дороги вертикальной составляющей сил инерции. Поскольку потерянную при этом кинетическую энергию учесть не удается, нельзя определить и действительное значение скорости тела в момент падения, можно определить лишь нижний ее предел.

Отношение силы сопротивления движению к весу транспортного средства при свободном качении его на участке с продольным уклоном дороги называется коэффициентом суммарного сопротивления дороги ψ. Величина его может быть определена по формуле:

где: f коэффициент сопротивления качению;
α угол уклона дороги.

Знак (+) берется при движении транспортного средства на подъем, знак (—) — при движении на спуске.

При перемещении по наклонному участку дороги заторможенного транспортного средства коэффициент суммарного сопротивления движению выражается аналогичной формулой:

где φ коэффициент сцепления шин с поверхностью дороги;
коэффициент эффективности торможения транспортного средства/

ВРЕМЯ РЕАКЦИИ ВОДИТЕЛЯ

Под временем реакции водителя в психологической практике понимается промежуток времени с момента поступления к водителю сигнала об опасности до начала воздействия водителя на органы управления транспортного средства (педаль тормоза, рулевое колесо).

Читайте также:  Как нарисовать замкнутую линию

В экспертной практике под этим термином принято понимать промежуток времени t1, достаточный для того, чтобы любой водитель (психофизические возможности которого отвечают профессиональным требованиям) после того, как возникнет объективная возможность обнаружить опасность, успевал воздействовать на органы управления транспортного средства.

Очевидно между этими двумя понятиями имеется существенная разница.

Во-первых, не всегда сигнал об опасности совпадает с моментом, когда возникает объективная возможность обнаружить препятствие. В момент появления препятствия водитель может выполнять другие функции, отвлекающие его на какое-то время от наблюдения в направлении возникшего препятствия (например, наблюдение за показаниями контрольных приборов, поведением пассажиров, объектами, расположенными в стороне от направления движения, и т. п.).

Следовательно, время реакции (в том смысле, какой вкладывается в этот термин в экспертной практике) включает в себя время, прошедшее с момента, когда водитель имел объективную возможность обнаружить препятствие, до момента, когда он фактически его обнаружил, и собственно время реакции с момента поступления к водителю сигнала об опасности.

Во-вторых, время реакции водителя t1, которое принимается в расчетах экспертов, для данной дорожной обстановки величина постоянная, одинаковая для всех водителей. Она может значительно превышать фактическое время реакции водителя в конкретном случае дорожно-транспортного происшествия, однако фактическое время реакции водителя не должно быть больше этой величины, так как тогда его действия следует оценивать как несвоевременные. Фактическое время реакции водителя в течении короткого отрезка времени может меняться в широких пределах в зависимости от целого ряда случайных обстоятельств.

Следовательно, время реакции водителя t1, которое принимается в экспертных расчетах, по существу является нормативным, как бы устанавливающим необходимую степень внимательности водителя.

Если водитель реагирует на сигнал медленнее, чем другие водители, следовательно, он должен быть более внимательным при управлении транспортным средством, чтобы уложиться в этот норматив.

Было бы правильнее, по нашему мнению, назвать величину t1 не временем реакции водителя, а нормативным временем запаздывания действий водителя, такое название точнее отражает сущность этой величины. Однако поскольку термин «время реакции водителя» прочно укоренился в экспертной и следственной практике, мы сохраняем его и в настоящей работе.

Так как необходимая степень внимательности водителя и возможность обнаружения им препятствия в различной дорожной обстановке неодинаковы, нормативное время реакции целесообразно дифференцировать. Чтобы сделать это, необходимы сложные эксперименты с целью выявления зависимости времени реакции водителей от различных обстоятельств.

В экспертной практике в настоящее время рекомендуется принимать нормативное время реакции водителя t1 равным 0,8 сек. Исключение составляют следующие случаи.

Если водитель предупрежден о возможности возникновения опасности и о месте предполагаемого появления препятствия (например, при объезде автобуса, из которого выходят пассажиры, или при проезде с малым интервалом мимо пешехода), ему не требуется дополнительное время на обнаружение препятствия и принятие решения, он должен быть подготовлен к немедленному торможению в момент начала опасных действий пешехода. В подобных случаях нормативное время реакции t1 рекомендуется принимать 0,4—0,6 сек (большее значение — в условиях ограниченной видимости).

Когда водитель обнаруживает неисправность органов управления лишь в момент возникновения опасной обстановки, время реакции, естественно, возрастает, так как при этом необходимо дополнительное время для принятия водителем нового решения, t1 в этом случае равно 2 сек.

Читайте также:  Wi fi адаптер asus usb ac53 nano

Правилами движения водителю запрещается управлять транспортным средством даже в состоянии самого легкого алкогольного опьянения, а также при такой степени утомления, которая может повлиять на безопасность движения. Поэтому влияние алкогольного опьянения на t1 не учитывается, а при оценке степени утомляемости водителя и его влияния на безопасность движения следователь (суд) учитывает обстоятельства, которые вынудили водителя управлять транспортным средством в подобном состоянии.

Полагаем, что эксперт в примечании к заключению может указать на возрастание t1 в результате переутомления (после 16 час работы за рулем примерно на 0,4 сек).

Коэффициент сопротивления дает возможность учитывать потери энергии при движении тела. Чаще всего рассматривают два типа движения: движение по поверхности и движение в веществе (жидкости или газе). Если рассматривают движение по опоре, то обычно говорят о коэффициенте трения. В том случае, если рассматривают движение тела в жидкости или газе, то имеют в виду коэффициент сопротивления формы.

Определение коэффициента сопротивления (трения) скольжения

Речь идет о коэффициенте трения скольжения, который зависит от совокупных свойств трущихся поверхностей и является безразмерной величиной. Коэффициент трения зависит от: качества обработки поверхностей, трущихся тел, присутствия на них грязи, скорости движения тел друг относительно друга и т.д. Коэффициент трения определяют эмпирически (опытным путем).

Определение коэффициент сопротивления (трения) качения

Данный коэффициент, имеет размерность длины. Основной его единицей в системе СИ будет метр.

Определение коэффициента сопротивления формы

где — сила сопротивления, — плотность вещества, — скорость течения вещества (или скорость движения тела в веществе), площадь проекции тела на плоскость перпендикулярную к направлению движения (перпендикулярная потоку).

Иногда, если рассматривают движение вытянутого тела, то считают:

где V — объем тела.

Рассматриваемый коэффициент сопротивления является безразмерной величиной. Он не учитывает эффектов на поверхности тел, поэтому формула (3) может стать не пригодна, если рассматривается вещество, которое имеет большую вязкость. Коэффициент сопротивления (C) является постоянной величиной пока число Рейнольдса (Re) является неизменным. В общем случае .

Если тело имеет острые ребра, то эмпирически получено, что для таких тел коэффициент сопротивления остается постоянным в широкой области чисел Рейнольдса. Так опытным путем получено, что для круглых пластинок поставленных поперек воздушного потока, при значения коэффициента сопротивления находятся в пределах от 1,1 до 1,12. При уменьшении числа Рейнольдса () закон сопротивления переходит в закон Стокса, который для круглых пластинок имеет вид:

Сопротивление шаров было исследовано для широкой области чисел Рейнольдса до Для получили:

При , .

В справочниках представлены коэффициенты сопротивления для круглых цилиндров, шаров и круглых пластинок в зависимости от числа Рейнольдса.

В авиационной технике задача о нахождении формы тела с минимальным сопротивлением имеет особое значение.

Примеры решения задач

Задание Максимальная скорость автомобиля на горизонтальном участке дороги равна при максимальной мощности его равной P. Коэффициент лобового сопротивления автомобиля C, а наибольшая площадь сечения в направлении, перпендикулярном скорости S. Автомобиль подвергся реконструкции, наибольшую площадь сечения в направлении, перпендикулярном скорости уменьшили до величины , оставив коэффициент сопротивления без изменения. Считайте силу трения о поверхность дороги неизменной, найдите какова максимальная мощность автомобиля, если его скорость на горизонтальном участке дороги стала равна . Плотность воздуха равна .
Решение Сделаем рисунок.
Читайте также:  Какой цвет имеет наибольшую длину волны

Мощность автомобиля определим как:

где — сила тяги автомобиля.

Считая, что автомобиль на горизонтальном участке дороги движется с постоянной скоростью, запишем второй закон Ньютона в виде:

В проекции на ось X (рис.1), имеем:

Силу сопротивления, которую испытывает автомобиль, двигаясь в воздухе, выразим как:

Тогда мощность автомобиля можно записать:

Выразим из (1.5) силу трения автомобиля о дорогу:

Запишем выражение для мощности, но с изменёнными по условию задачи параметрами автомобиля:

Учтем, что сила трения автомобиля о дорогу не изменилась, и примем во внимание выражение (1.6):

Ответ
Задание Какова максимальная скорость шарика, который свободно падает в воздухе, если известны: плотность шарика (), плотность воздуха (), масса шарика (), коэффициент сопротивления C?
Решение Сделаем рисунок.

Запишем второй закон Ньютона для свободного падения шарика:

В проекции на ось Y (рис.2), имеем при :

где при этом можно считать, что:

Выражение для силы сопротивления, которая возникает при движении шарика в воздухе, найдем как:

Учтем, что массу шарика можно найти как:

а площадь S как:

подставим выражение (2.4) в формулу (2.3), получим:

Выразим искомую скорость:

Радиус шарика найдем, используя соотношение:

Ответ , где

Копирование материалов с сайта возможно только с разрешения
администрации портала и при наличие активной ссылки на источник.

Задачи с объяснениями. Сайт существует, благодаря рекламе Google. Пожалуйста, отключите блокировщик рекламы

вторник, 3 декабря 2013 г.

Найти коэффициент сопротивления движению, если сила тяги равна 14 кН

Трогаясь с места, автобус массой 20 т, проехав 50 м, приобретает скорость 10 м/с.
Найти коэффициент сопротивления движению, если сила тяги равна 14 кН.

Автобус масою 20 т рушаючи з місця, набуває на шляху 50 м, швидкості 10 мс. Знайдіть коефіцієнт опору руху, якщо сила тяги дорівнює 14 кН?

Второй закон Ньютона:

где a — ускорение, m — масса, Fp — равнодействующая всех сил, FT — сила тяги, N — обозначил силу сопротивления (не путать с силой реакции опоры, т.к часто ее обозначают такой буквой), g -ускорение свободного падения, мю — искомый коэффициент сопротивления движению.

Известная формула пути при равноускоренном движении:

Из последней формулы выразим "мю" и подставим данные из условия

В условии задачи явно есть ошибка. Не может сопротивление движению быть отрицательным, иначе оно не тормозит, а ускоряет. Какое же это сопротивление?

А проверим-ка вот так.

Кинетическая энергия в конце пути

Работа силы тяги $A=F_T*S=14000*50=700000; ext<Дж>$ (6)

Ну, вот. Не может тело приобрести энергию большую, чем затраченная на увеличение этой энергии работа. А ведь еще и должна быть работа на преодоление сопротивления движению.

Вывод: ход решения у нас правильный, но в условии задачи ошибка в заданных величинах.

Понравился сайт? Расскажи друзьям!
Ссылка на основную публикацию
Adblock detector