Кэшированная оперативная память что это

Кэшированная оперативная память что это

parfenon69

Member

Запустил диспечер задач во время записи фильма на болванку программой Nero. В разделе быстродействие обнаружил такие вот цифры.
Физическая память
Всего 4093
Кэшировано 2620
Доступно 2641
свободно 72

Оперативка у меня Kingston 2 gj 2gb 1333 mhz
что означают эти цифры . у меня из 4 гигов оперативки свободно лишь 72 чтоли.

Добавлено спустя 58 секунд:
2x2gb 1333mhz извиняюсь за опечатку

Stranger

Member

Разумеется. Свободная память совершенно бесполезна. Отсюда общее правило: чем меньше свободной памяти — тем лучше. Подумайте сами. Если память свободна, значит она не используется. А проку от чего-то, что не используется, нет никакого. Поэтому любая нормальная операционная система старается свободной памяти не оставлять. Сколько бы её ни было (хоть терабайт), она вся будет со временем использована. При этом, исполняющиеся в данный момент процессы, могут занимать только небольшую часть этой памяти. Для большинства процессов, объем, который они занимают, от объема ОЗУ вообще не зависит, однако некоторые, такие как браузеры, при запуске на системах с большим объемом памяти, запрашивают для себя память у системы с запасом. Чтобы иметь возможность хранить в ОЗУ большее количество открытых страниц и мультимедийных данных.
Естественно, возникает вопрос: куда система распределяет остальную память? Ответ прост. На буферы и кэш (часто встречается ошибочный вариант написания "буфера").
Для чего нужны буферы? Чтобы ускорить операции записи (обычно на диск). Если Вы даете команду скопировать файл, он читается и помещается в буфер отложенной записи. А Вам сообщается, что команда выполнена (хотя на самом деле ничего еще не записано) и Вы можете продолжать работу. С определенной периодичностью, составляющую в Linux по умолчанию 10 секунд, хотя можно задать любую, буферы сбрасываются на диск.
Или буферы сбрасываются раньше, при достижении ими определенного размера. Это тоже понятно. Допустим, у Вас два HDD и Вы хотите переместить ОГРОМНЫЙ файл с первого на второй.
Чтение традиционно более быстрая операция, чем запись, поэтому при бесконечном буфере у Вас файл будет прочитан в него задолго до того, как содержимое буфера окажется записано на второй диск.
Программа, получив от операционной системы сообщение об успешном копировании файла (которое выдается после окончания чтения файла в буфер), со спокойной совестью удаляет оригинал, который больше не нужен, раз у Вас есть копия. И в этот момент электрик дергает рубильник.
Итак, чтобы минимизировать возможные потери, размеры буферов ограничены.
Как использовать оставшуюся память? Да очень просто! В тот момент, когда Вы читаете какой-то файл с диска, его копия сохраняется в кэш-памяти. Поэтому повторное чтение того же файла происходит мгновенно.
Мало того. Если операционная система поддерживает технологию "execute in place", при запуске программы на выполнение не нужно тратить время на копирование команд и данных процесса в оперативную память. Управление передается непосредственно файлу на диске. Без считывания его в ОЗУ. Действительно, зачем два раза выполнять одну и ту же работу? Ведь при обращении к файлу он в любом случае окажется в кэше. А кэш — это и есть ОЗУ.
Какой размер операционная система выделяет под кэш? Ответ прост: всю, которую найдет.
Если память понадобится процессу, система просто отдаст ему кусок памяти занятой кэшем. Эта операция выполняется крайне быстро, но, тем не менее, операционная система учитывает, что могут существовать программы, которые будут требовать у неё память десятки тысяч раз в секунду. Понятно, что таким образом можно запрашивать только очень маленькие объемы. Даже если просить, скажем, всего один мегабайт, то за десять тысяч запросов объем вырастет до величин, бОльших объема физически установленного ОЗУ на большинстве домашних компьютеров.
Поэтому, для удовлетворения таких (частых, но мелких) запросов достаточно зарезервировать пару процентов ОЗУ и не больше.

Поэтому и получается, что формально ничем не заняты на Вашем компьютере всего 72 МБ RAM, в то время как система готова в любой момент мгновенно выделить процессам до 2641 МБ (72 МБ свободной памяти + 2620 МБ кэш + сколько-то буферов — резерв, необходимый системе для собственных нужд).

Основная память, реализуемая на относительно медленных по своей природе микросхемах динамической памяти, обычно требует ввода тактов ожидания про­цессора (wait states) в циклы обращения к памяти. Статическая память, пост­роенная, как и процессор, на триггерных ячейках, по своей природе способна догонять современные процессоры по быстродействию и избежать (или хотя бы сократить количество) тактов ожидания. Реализация основной памяти на микросхемах SRAM технически и экономически не оправдана, поскольку плот­ность упаковки информации у них существенно ниже, а удельная стоимость хранения и энергопотребление (или, что важнее, тепловыделение) существенно выше, чем у DRAM. Разумным компромиссом для построения экономичных и производительных систем явился иерархический способ построения оператив­ной памяти, пришедший в архитектуру PC с появлением процессора 386, у которого тактовая частота уже значительно отрывалась от возможностей мик­росхем DRAM того времени. Идея этого способа заключается в сочетании основной памяти большого объема на DRAM с относительно небольшой кэш-памятью на быстродействующих микросхемах SRAM. Идея, конечно, далеко не нова — сверхоперативная память применялась давно, еще в «больших» компь­ютерах.

В переводе слово «кэш» (cache) означает склад или тайник («заначка»). Тайна этого склада заключается в его «прозрачности» — для программы он не представляет собой дополнительной адресуемой области памяти. Он является дополнительным и быстродействующим хранилищем копий блоков информа­ции основной памяти, к которым, вероятно, в ближайшее время будет обраще­ние. Кэш не может хранить копию всей основной памяти, поскольку его объем во много раз меньше объема основной памяти. Он хранит лишь ограниченное количество блоков данных и каталог (cache directory) — список их текущего соответствия областям основной памяти. Кроме того, кэшироваться может не вся память, доступная процессору: обычно кэшируется только основная дина­мическая память системной платы (память, установленная на адаптерах, не кэшируется), и из этой памяти кэшируется только часть (распространенные версии чипсетов для Pentium часто позволяют кэшировать только первые 64 Мбайт ОЗУ).

При каждом обращении к кэшируемой памяти контроллер кэш-памяти по каталогу проверяет, есть ли действительная копия затребованных данных в кэше. Если она там есть, то это случай кэш-попадания (cache hit), и обращение за данными происходит только к кэш-памяти. Если действительной копии там нет, то это случай кэш-промаха (cache miss), и данные берутся из основной памяти. В соответствии с алгоритмом кэширования блок данных, считанный из основной памяти при определенных условиях, заместит один из блоков кэша. От «ловкости» и «предусмотрительности» алгоритма зависит процент попада­ний и, следовательно, эффективность кэширования. Поиск блока в списке дол­жен производиться достаточно быстро, чтобы «задумчивостью» в принятии решения не свести на нет выигрыш от применения быстродействующей памяти. Обращение к основной памяти может начинаться одновременно с поиском в каталоге, а в случае попадания — прерываться (архитектура Look Aside). Это экономит время, но лишние обращения к основной памяти ведут к излишнему энергопотреблению. Другой вариант — обращение к внешней памяти начинает­ся только после фиксации случая промаха (архитектура Look Through), но на этом теряется, по крайней мере, один такт процессора, зато экономится энергия.

В современных компьютерах кэш обычно строится по двухуровневой схеме. Первичный кэш ( Li Cache) встроен во все процессоры класса 486 и старше, он имеется и у некоторых моделей 386. Объем его невелик (8-32 Кбайт), и для повышения производительности для данных и команд часто используется раз­дельный кэш (так называемая Гарвардская архитектура — противоположность Принстонской, использующей общую память для команд и данных). Быстро­действие его таково, что он работает на внутренней тактовой частоте процессора (CPU Clock), уже достигшей 333 МГц. Вторичный кэш (L2 Cache) обычно ус­танавливается на системной плате. Типовым для компьютеров на процессоре i486 считается объем 64-256 Кбайт, для Pentium — 256-512 Кбайт, новые чипсеты поддерживают до 2 Мбайт L2 Cache. Его быстродействие обеспечивает ра­боту на внешней тактовой частоте процессора — частоте системной шины (Host Bus Clock), типовое значение которой от диапазона 50-66 МГц уже переходит к 75, 83 и даже 100-125 МГц. В Pentium Pro синхронный L2 Cache располо­жен в одном корпусе с процессором и работает на его внутренней частоте.

Читайте также:  Именной список безвозвратных потерь вов

Кэш-контроллер должен обеспечивать когерентность (coherency) — согласо­ванность данных кэш-памяти обоих уровней с данными в основной памяти, причем обращение к этим данным может производиться не только со стороны процессора (а процессоров может быть и несколько, и у каждого может быть свой внутренний кэш), но и со стороны других активных (bus-master) адаптеров, подключенных к шинам (PCI, VLB, ISA. ).

Контроллер кэша оперирует строками (cache line) фиксированной длины. Строка может хранить копию блока основной памяти, размер которого, естес­твенно, совпадает с длиной строки. С каждой строкой кэша связана информация об адресе скопированного в нее блока основной памяти и признаки ее состоя­ния. Строка может быть действительной (valid) — это означает, что в текущий момент времени она достоверно отражает соответствующий блок основной па­мяти, или недействительной (пустой). Информация о том, какой именно блок занимает данную строку (то есть старшая часть адреса или номер страницы), и ее состояние называется тегом (tag) и хранится в связанной с данной строкой ячейке специальной памяти тегов (tag RAM). В операциях обмена с основной памятью обычно строка участвует целиком (несекторированный кэш), для про­цессоров i486 и старше длина строки совпадает с объемом данных, передаваемых за один пакетный цикл (для 486 это 4х4 = 16 байт, для Pentium — 4х8=32 байт). Возможен и вариант секторированного (sectored) кэша, при котором одна строка содержит несколько смежных ячеек — секторов, размер которых соответствует минимальной порции обмена данных кэша с основной памятью. При этом в записи каталога, соответствующей каждой строке, должны храниться биты дей­ствительности для каждого сектора данной строки. Секторирование позволяет экономить память, необходимую для хранения каталога при увеличении объема кэша, поскольку большее количество бит каталога отводится под тег и выгоднееиспользовать дополнительные биты действительности, чем увеличивать глубину индекса (количество элементов) каталога.

Строки кэша под отображение блока памяти обычно выделяются только при операциях чтения. Запись блока, не имеющего копии в кэше, производится только в основную память (для повышения быстродействия она может производиться через буфер отложенной записи, но это отдельный механизм, не имеющий не­посредственного отношения к рассматриваемому кэшированию). Поведение кэш-контроллера при операции записи в память, когда копия затребованной области находится в некоторой строке кэша, определяется его политикой записи (Write Po­licy). Существуют два основных алгоритма записи данных из кэша в основную память: сквозная запись WT (Write Through) и обратная запись WB (Write Back).

Алгоритм WT предусматривает выполнение каждой операции записи (даже однобайтной), попадающей в кэшированный блок, одновременно и в строку кэша, и в основную память. При этом процессору при каждой операции записи придется ожидать окончания относительно длительной записи в основную па­мять. Алгоритм достаточно прост в реализации и легко обеспечивает целост­ность данных за счет постоянного совпадения копий данных в кэше и основной памяти. Для него нет необходимости хранения признаков присутствия и моди­фицированное™ — вполне достаточно только информации тега (при этом счи­тается, что любая строка всегда отражает какой-либо блок, а какой именно — указывает тег). Но эта простота оплачивается низкой эффективностью записи. Существуют варианты этого алгоритма с применением отложенной буфериро­ванной записи, при которой данные в основную память переписываются через ‘FIFO-буфер во время свободных тактов шины.

Алгоритм WB позволяет уменьшить количество операций записи на шине основной памяти. Если блок памяти, в который должна производиться запись, отображен и в кэше, то физическая запись сначала будет произведена в эту действительную строку кэша, и она будет отмечена как грязная (dirty), или модифицированная, то есть требующая выгрузки в основную память. Только после этой выгрузки (записи в основную память) строка станет чистой (clean), и ее можно будет использовать для кэширования других блоков без потери целостности данных. В основную память данные переписываются только целой строкой (после заполнения всех ее секторов в случае секторированного кэша) или непосредственно перед ее замещением в кэше новыми данными. Данный алгоритм сложнее в реализации, но существенно эффективнее, чем WT. Под­держка системной платой кэширования с обратной записью требует обработки дополнительных интерфейсных сигналов для обеспечения выгрузки модифи­цированных строк в основную память, если к этой области производится обра­щение со стороны таких контроллеров шины, как графические адаптеры, контроллеры дисков, сетевые адаптеры и т. п.

В зависимости от способа определения взаимного соответствия строки кэша и области основной памяти различают три архитектуры кэш-памяти: кэш пря­мого отображения (direct-mapped cache), полностью ассоциативный кэш (fully associative cache) и их комбинация — частично- или наборно-ассоциативный кэш (set-associative cache).

Кэш прямого отображения

В кэш-памяти прямого отображения адрес памяти, по которому происходит обращение, однозначно определяет строку, в которой может находиться отобра­жение требуемого блока. Принцип его работы поясним на примере несекто-рированного кэша объемом 256 Кбайт с размером строки 32 байта и объемом кэшируемой основной памяти 64 Мбайт — типичный кэш системной платы для Pentium. Структуру памяти в такой системе иллюстрирует рис.

Кэш прямого отображения

Кэшируемая основная память условно разбивается на страницы (в дан­ном случае 256), размер которых совпадает с размером кэш-памяти. Кэш-память (и опять-таки условно страницы основной памяти) делится на строки (256К/32 = 8К строк). Архитектура прямого отображения подразумевает, что каждая строка кэша может отображать из любой страницы кэшируемой памяти только соответствующую ей строку (на рис. 5.1 они находятся на одном гори­зонтальном уровне). Поскольку объем основной памяти много больше объема кэша, на каждую строку кэша может претендовать множество блоков памяти с одинаковой младшей частью адреса (смещением внутри страницы). Одна строкав определенный момент может, естественно, содержать копию только одного из этих блоков. Номер (адрес) строки в кэш-памяти называется индексом (index). Информация о том, какой именно блок занимает данную строку (то есть стар­шая часть адреса или номер страницы), называется тегом (tag) и хранится в связанной с данной строкой ячейке специальной памяти тегов (tag RAM). Самые младшие биты адреса определяют положение байта в банке памяти (А[0:2]) и в строке (A3, А4), но для работы кэш-контроллера они несущественны. Память тегов должна иметь количество ячеек, равное количеству строк кэша, а ее разрядность должна умещать старшие биты адреса кэшируемой памяти, не попавшие на шину адреса кэш-памяти. Кроме адресной части тега с каждой строкой кэша связаны биты признаков действительности и модифицированнос-ти данных.

В начале каждого обращения к кэшируемой памяти контроллер первьш делом считывает ячейку каталога с заданным индексом, сравнивает биты адреса тега со старшими битами адреса памяти и анализирует признак действитель­ности. Этот анализ выполняется в специальном цикле слежения (snoop cycle), иногда его называют циклом запроса (inquire). Если в результате анализа вы­ясняется, что требуемый блок не находится в кэше, то генерируется (или про­должается) цикл обращения к основной памяти (случай кэш-промаха); в случае попадания запрос обслуживается кэш-памятью. В случае промаха после считы­вания основной памяти новые данные помещаются ив строку кэша (если она чистая), а в ее тег помещаются старшие биты адреса и устанавливается признак действительности данных. Независимо от объема затребованных данных в кэш из основной памяти, строка переписывается вся целиком (поскольку признак действительности относится ко всем ее байтам). Если контроллер кэша реали­зует упреждающее считывание (read ahead), то в последующие свободные циклы шины обновится и следующая за ней строка (если она была чистой). Это чтение «про запас» позволит при необходимости осуществлять пакетный цикл чтения из кэша через границу строки.

Читайте также:  Как открыть формат tsv

Этот кэш имеет самую простую аппаратную реализацию и применяется во вторичном кэше большинства системных плат. Однако ему присущ серьезный недостаток, вполне очевидный при рассмотрении рисунка. Если в процессе вы­полнения программы процессору поочередно будут требоваться блоки памяти, смещенные относительно друг друга на величину, кратную размеру страницы, то кэш будет работать интенсивно, но вхолостую (cache trashing). Очередное обращение будет замещать данные, считанные в предыдущем и потребующиеся в последующем обращении — то есть будет сплошная череда кэш-промахов. Переключение страниц в многозадачных ОС также снижает ко­личество кэш-попаданий, что отражается на производительности системы. Уве­личение размера кэша при его архитектуре прямого отображения даст не очень существенный эффект, поскольку разные задачи будут претендовать на одни и те же строки кэша.

Иногда в описании кэша прямого отображения фигурирует понятие набор (set), что может сбить с толку. Оно применяется вместо термина строка (line) в секторированном кэше прямого отображения, а сектор тогда называют стро-кой, С набором (как и строкой несекторированного кэша) связана информация о теге, относящаяся ко всем элементам набора (строкам или секторам). Кроме того, каждый его элемент (строка или сектор) имеет собственный бит действи­тельности (Valid Bit) в кэш-каталоге .

Наборно-ассоциативный кэш

Недостаток кэша прямого отображения более эффективно, чем простое увели­чение его объема, смягчает изменение его структуры. Наборно-ассоциатшная архитектура кэша позволяет каждому блоку кэшируемой памяти претендовать на одну из нескольких строк кэша, объединенных в набор (set). Эту архитектуру можно рассматривать как несколько параллельно и согласованно работающих каналов прямого отображения, где контроллеру кэша приходится еще и прини­мать решение о том, в какую из строк набора помещать очередной блок данных.

В простейшем случае каждый блок памяти может помещаться в одну из двух строк (Two Way Set-Associative Cache). Такой кэш должен содержать два банка памяти тегов.

Номер набора (индекс), в котором может отображаться затребованный блок данных, однозначно определяется средней частью адреса (как номер строки в кэше прямого отображения). Строка набора, отображающая требуемый блок, определяется сравнением тегов (как в ассоциативном кэше), параллельно вы­полняемым для всех каналов кэша. Кроме того, с каждым набором должен быть связан признак, определяющий строку набора, подлежащую замещению новым блоком данных в случае кэш-промаха (на рис. 5.3 в ее сторону указывает стрел­ка). Кандидатом на замещения обычно выбирается строка, последнее обращение к которой было раньше ( LRU — Least Recently Used). При относительно боль­шом количестве каналов (строк в наборе) прибегают к некоторому упроще­нию — алгоритм Pseudo-LRU для четырех строк (Four Way Set Associative Cache) позволяет принимать решения, используя всего 3 бита. Возможно также при­менение алгоритма замещения FIFO (первый вошел — первым и вышел) или даже случайного (random), что проще, но менее эффективно.

Наборно-ассоциативная архитектура широко применяется для первичного кэша современных процессоров. Для вторичного кэша такую архитектуру для 386 и i486 обеспечивают микросхемы 82385 и 82485 соответственно, включаю­щие в себя собственно контроллер и память тегов. К ним в комплект требуются только микросхемы кэш-памяти данных.

Ассоциативный кэш

В отличие от предыдущих у полностью ассоциативного кэша любая его строка может отображать любой блок памяти, что существенно повышает эффектив­ность использования его ограниченного объема. При этом все биты адреса кэ-шированного блока, за вычетом бит, определяющих положение (смещение) данных в строке, хранятся в памяти тегов. В такой архитектуре для определения наличия затребованных данньхх в кэш-памяти требуется сравнение со старшей частью адреса тегов всех строк, а не одной или нескольких, как при прямомотображении или наборно-ассоциативной архитектуре. Естественно, последова­тельный перебор ячеек памяти тегов отпадает — на это может уйти слишком много времени. Остается параллельный анализ всех ячеек, что является очень объемной аппаратной задачей, которая пока решается только для небольших объемов первичного кэша в некоторых процессорах. Применение полностью ас­социативной архитектуры во вторичном кэше пока не предвидится.

Варианты защиты памяти.

2 базовых подхода:

1). по граничным адресам

1). когда выполняется программа известно, с какими данными она работает, это определятся при трансляции на уровне логических адресов. Известен начальный и конечный адрес программы, передача управления за пределы зоны — ошибка.

2). классический вариант для 32 –х разрядных с длинным логическим адресом и коротким физическим. Изначально использовался именно при страничной организации памяти. Каждой странице присваивается некоторый код доступа, который определяет возможно ли обращение по:

создается уровень приоритетов для исполн. программ. Программа с наибольшим приоритетом может делать все. Программа самого нижнего уровня может работать только со своими страницами или со страницами своего уровня привилегий. Как правило приоритет определяется в начальной странице программы.

Дата добавления: 2018-10-26 ; просмотров: 162 ;

Всем привет Поговорим о том, как отключить кэширование в Windows, а также напишу минусы его и плюсы. Значит что вообще такое это кэширование виндовское и для чего оно нужно? Значит оно как бы ускоряет комп в целом, ну думаю вы и так знаете. Но вот в чем прикол, мне кажется, что это кэширование не совсем так работает, как о нем пишут в интернетах..

Дело в том, что это кэширование файлов приводит к тому, что все последующие обращения к одному и тому же файлу происходят намного быстрее. Но кэширование работает именно на уровне файлов, это стоит учесть, ибо например утилита PrimoCache (которой кстати я давно уже пользуюсь, она позволяет создать кэш из ОЗУ для жесткого диска), так она кэширует как бы не файлы, а блоки файловой системы. Как по мне, то эффективность кэширования блоков куда выше, чем файлов.

Но как бы там не было, отключать кэширование я все равно не советую, потому что так бы сказать это базовое кэширование и оно очень необходимо. Мы не знаем эффект от него, не видим просто потому, что оно по умолчанию уже включено. Даже в Windows XP по умолчанию включено это кэширование. Вот если бы винда устанавливалась с отключенным кэшированием, то потом, после некоторого времени, если бы вы включили кэширование, то вы стопудово заметили бы ускорение работы системы

Я писал, что виндовское кэширование не до конца изучено, ну или о нем просто мало есть инфы. Что я это имел ввиду? По моим наблюдениям, виндовское кэширование это нечто большее чем просто кэширование файлов. После включения кэширования его я не замечаю взрыв производительности, нет, такого нет, но то что оболочка работает быстрее, это факт. То что программы чуть быстрее открываются и закрываются, это тоже факт. Мелкие файлы также легче копировать. Загрузка рабочего стола со всеми процессами, прогами которые стоят в автозагрузке, то все это происходит немного быстрее при включенном виндовском кэшировании. Почему так, я не знаю. Но уверен, что кэширование нужно не только для файлов! Возможно что кэшируются данные, с которыми работают те или иные программы, кэшируются вызовы команд, библиотеки, ну и все остальное такое эдакое. Вы уж извините, может я и бред написал, но я вот так думаю.

Читайте также:  Как сделать файловую систему ntfs на флешке

Поэтому даже используя утилиту PrimoCache, я все равно не отключаю виндовское кэширование. И вам советую. Правда есть разговоры в интернетах, что в Windows 7 такое кэширование потребляет много оперативы и потом назад эту память не отдает. Ну, честно вот скажу, никогда ничего подобного у меня не было, и очень странно, ведь я с компьютером почти не расстаюсь..

Ну так вот, теперь по поводу настроек. В винде есть два вида кэширования, это кэширование дисков и кэширование файловой системы. Или это одно и тоже, я честно говоря не знаю, но вроде бы это разные настройки. То есть чтобы полностью включить или отключить кэширование в Windows, нужно пройтись по этим обоим настройкам.

Итак, первая настройка, это служба SuperFetch. Именно эта служба и обеспечивает кэширование файловой системы в виндовс. Я лично ее не отключал, вернее я пробовал ее отключить, но пришел к выводу, что лучше ее оставить включенной. Вы тоже можете провести эксперимент: отключите службу и поработайте за компом несколько недель, а потом ее включите и сравните работу. Может вы заметите разницу, а может быть и не заметите. Кому как, но если комп работает быстрее и без службы SuperFetch, то думаю что нет смысла вам ее включить. В принципе все логично..

Я сейчас покажу как отключить SuperFetch в Windows 10, но также само все можно сделать и в Windows 7. Можно ли отключить в Vista, я, честно говоря не знаю.. Но думаю что можно.. Ну так вот, открываете диспетчер задач и там идете на вкладку Службы, где нажимаете кнопку Открыть службы:

Теперь тут находим службу SuperFetch (кстати она еще называется SysMain, так что теперь знайте что это за служба) и нажимаем по ней два раза:

Потом появится вот такое небольшое окошко свойств:

Как видите, в поле Описание тут сказано кратко, что поддерживает и улучшает производительность системы. Ну, в принципе, как я уже писал, то так оно и есть. Теперь, чтобы отключить эту службу, вам нужно там где Тип запуска, то там выбрать Отключена. И потом еще нажать кнопку Остановить, ну чтобы работа службы прекратилась. Ну а чтобы включить ее обратно, то нужно все вернуть как было

Это была первая настройка. А вот вторая настройка, это я имею ввиду кэширования дисков в Windows и вот как это кэширование отключить. Открываете окно Мой компьютер, в Windows 10 вы можете сразу его и не открыть, ну мало ли, поэтому на всякий случай я покажу команду, при помощи которой можно открыть это окно. Просто зажимаете Win + R и пишите туда такое как:

Теперь нажимаете правой кнопкой по любому диску или разделу и выбираете там Свойства:

Откроется окошко свойств, тут вам нужно перейти на вкладку Оборудование, где у вас будут все диски, вот эта вкладка:

А внизу там есть еще кнопочока Свойства. Так вот, вам нужно выбрать диск, и потом нажать эту кнопку, чтобы открыть уже свойства устройства, ну то есть диска. В общем выбираем диск и нажимаем кнопку Свойства:

Дальше нажимаем кнопку Изменить параметры:

И вот теперь, на вкладке Политика будут две галочки, вот они:

Как видите, они у меня поставлены, если вам нужно максимально отключить виндовское кэширование, то помимо отключения службы SuperFetch, снимите и тут галочки. Но учтите, что после этих отключений, ну я имею ввиду и SuperFetch и вот это кэширование записей, очистка буфера, то после всего этого у вас винда может начать работать немного медленнее. А если у вас SSD, то может быть и не будет разницы, но если не будет разницы, то в этом в кэшировании точно нет смысла! Но это вам нет, а вот вашему SSD (если у вас именно он), то польза может и будет, ибо с включенным кэшированием обращений к SSD-диску возможно что будет меньше. Вот такие вот дела ребята, так что учитывайте все моменты при отключении кэширования..

ЗАБЫЛ КОЕ ЧТО! Я вот показал как отключить кэширование дисков, да? Ну так вот, это нужно сделать для каждого диска! То есть там в окошке выбираете диск и потом нажимаете кнопку Свойства, и потом уже отключаете кэширование. ВОТ ТАК нужно сделать с каждым диском, для каждого диска нажать кнопку Свойства, ну, думаю все понятно

Что еще сказать про кэширование? Даже не знаю.. Ну то что отключать его я не советую, это я уже написал, однако решение все равно за вами, кому-то легче с ним, а у кого-то оно вызывает только глюки. Ведь для кэширования нужна оперативка, правда Microsoft утверждает, что при необходимости, оперативка будет освобождена под нужды какой-то проги. Но как уже убедились юзеры Windows 7, это не всегда происходит именно так, хотя у меня все было нормально. Часто юзеры писали, что какая-то программа сообщает, что ей не хватает оперативки, когда ее в теории должно быть полно. А оказывается, что вся она ушла под кэширование и возвращаться не собирается. Вот такие пироги..

Итак, давайте подведем выводы. Какие плюсы у отключения кэширования?

  1. Потребление оперативной памяти самой Windows должно снизится.
  2. Работающих служб станет на одну меньше, конечно это плюс сомнительный, но чем меньше работающих служб, тем быстрее работает сама Windows.
  3. Меньше шансов, что ценная информация пропадет. В теории данные должны записываться сразу на диск, без буферной зоны в виде кэша. Ну это не то чтобы в теории, это так и должно быть.

Как видим плюсы есть, но огромных все таки нет, разве что Windows будет потреблять меньше оперативки. Но и тут прикол, некоторые юзеры писали, что даже при отключении кэширования, винда все равно продолжала кушать оперативку под какой-то кэш. Правда дело было в Windows 7.

Ну а какие минусы отключения виндовского кэширования?

  1. Некоторые программы могут работать медленнее. Копирование файлов, установка и запуск программ, закрытие программ, все эти процессы могут происходить немного медленнее. Однако это я имею ввиду если у вас жесткий диск (HDD), если же твердотельный накопитель (SSD), то никакого замедления быть не должно.
  2. Увеличится обращение к диску. В случае с жестким диском это проявляется как периодическое подтормаживание, а в случае с SSD это просто увеличит количество записи/чтения данных (что не так уж и полезно для SSD).
  3. После отключения кэширования, свободная оперативная память будет простаивать, то есть пользы от нее никакой не будет. С другой стороны доступный обьем ОЗУ будет полностью в распоряжении запущенных программ.

Вот такие дела, я не знаю что написать по поводу особых плюсов или особых минусов в кэшировании. Тут каждый выбирает сам. То что система с включенным кэшированием работает быстрее, то в этом я сам лично убедился. Если отключить кэширование, то становится больше оперативы, я это тоже заметил. Поэтому вывод можно сделать один: я показал как отключить кэширование, вам осталось просто провести эксперимент и понять, что лучше, без кэширования или с ним. Рекомендую эксперимент вести не один день, а где-то неделю, или даже две, чтобы окончательно закрыть для себя вопрос, ну как-то так..

В общем на этом все, извините если что не так, но надеюсь что все вам тут было понятно. Удачи вам в жизни и всего хорошего

Ссылка на основную публикацию
Adblock detector