Как решить сумму корней

Как решить сумму корней

Квадратным корнем из числа X называется число A, которое в процессе умножения самого на себя (A * A) может дать число X.
Т.е. A * A = A 2 = X, и √X = A.

Над квадратными корнями (√x), как и над другими числами, можно выполнять такие арифметические операции, как вычитание и сложение. Для вычитания и сложения корней их нужно соединить посредством знаков, соответствующих этим действиям (например √x — √y).
А потом привести корни к их простейшей форме — если между ними окажутся подобные, необходимо сделать приведение. Оно заключается в том, что берутся коэффициенты подобных членов со знаками соответствующих членов, далее заключаются в скобки и выводится общий корень за скобками множителя. Коэффициент, который мы получили, упрощается по обычным правилам.

Шаг 1. Извлечение квадратных корней

Во-первых, для сложения квадратных корней сначала нужно эти корни извлечь. Это можно будет сделать в том случае, если числа под знаком корня будут полными квадратами. Для примера возьмем заданное выражение √4 + √9. Первое число 4 является квадратом числа 2. Второе число 9 является квадратом числа 3. Таким образом, можно получить следующее равенство: √4 + √9 = 2 + 3 = 5.
Все, пример решен. Но так просто бывает далеко не всегда.

Шаг 2. Вынесение множителя числа из-под корня

Если полных квадратов нет под знаком корня, можно попробовать вынести множитель числа из-под знака корня. Для примера возьмём выражение √24 + √54.

Раскладываем числа на множители:
24 = 2 * 2 * 2 * 3,
54 = 2 * 3 * 3 * 3.

В числе 24 мы имеем множитель 4, его можно вынести из-под знака квадратного корня. В числе 54 мы имеем множитель 9.

Получаем равенство:
√24 + √54 = √(4 * 6) + √(9 * 6) = 2 * √6 + 3 * √6 = 5 * √6.

Рассматривая данный пример, мы получаем вынос множителя из-под знака корня, тем самым упрощая заданное выражение.

Шаг 3. Сокращение знаменателя

Рассмотрим следующую ситуацию: сумма двух квадратных корней – это знаменатель дроби, например, A / (√a + √b).
Теперь перед нами стоит задача «избавиться от иррациональности в знаменателе».
Воспользуемся следующим способом: умножаем числитель и знаменатель дроби на выражение √a — √b.

Формулу сокращённого умножения мы теперь получаем в знаменателе:
(√a + √b) * (√a — √b) = a – b.

Аналогично, если в знаменателе имеется разность корней: √a — √b, числитель и знаменатель дроби умножаем на выражение √a + √b.

Возьмём для примера дробь:
4 / (√3 + √5) = 4 * (√3 — √5) / ( (√3 + √5) * (√3 — √5) ) = 4 * (√3 — √5) / (-2) = 2 * (√5 — √3).

Пример сложного сокращения знаменателя

Теперь будем рассматривать достаточно сложный пример избавления от иррациональности в знаменателе.

Для примера берём дробь: 12 / (√2 + √3 + √5).
Нужно взять её числитель и знаменатель и перемножить на выражение √2 + √3 — √5.

12 / (√2 + √3 + √5) = 12 * (√2 + √3 — √5) / (2 * √6) = 2 * √3 + 3 * √2 — √30.

Шаг 4. Вычисление приблизительного значения на калькуляторе

Если вам требуется только приблизительное значение, это можно сделать на калькуляторе путём подсчёта значения квадратных корней. Отдельно для каждого числа вычисляется значение и записывается с необходимой точностью, которая определяется количеством знаков после запятой. Далее совершаются все требуемые операции, как с обычными числами.

Пример вычисления приблизительного значения

Необходимо вычислить приблизительное значение данного выражения √7 + √5.

В итоге получаем:

Читайте также:  Как фотошопить фотки на компьютере

√7 + √5 ≈ 2,65 + 2,24 = 4,89.

Обратите внимание: ни при каких условиях не следует производить сложение квадратных корней, как простых чисел, это совершенно недопустимо. То есть, если сложить квадратный корень из пяти и из трёх, у нас не может получиться квадратный корень из восьми.

Полезный совет: если вы решили разложить число на множители, для того, чтобы вывести квадрат из-под знака корня, вам необходимо сделать обратную проверку, то есть перемножить все множители, которые получились в результате вычислений, и в конечном результате этого математического расчёта должно получиться число, которое нам было задано первоначально.

Сложение и вычитание корней — один из наиболее распространенных «камней преткновения» для тех, кто проходит курс математики (алгебры) в средней школе. Однако научиться правильно складывать и вычитать их очень важно, потому что примеры на сумму или разность корней входят в программу базового Единого Государственного Экзамена по дисциплине «математика».

Для того чтобы освоить решение таких примеров, необходимо две вещи — разобраться в правилах, а также наработать практику. Решив один-два десятка типовых примеров, школьник доведет этот навык до автоматизма, и тогда ему уже будет нечего бояться на ЕГЭ. Начинать освоение арифметических действий рекомендуется со сложения, потому что складывать их немного проще, чем вычитывать .

Что такое корень

Проще всего объяснить это на примере квадратного корня. В математике имеется устоявшийся термин «возвести в квадрат». «Возвести в квадрат» означает однократно умножить конкретное число само на себя. Например, если возвести в квадрат 2, получится 4. Если возвести в квадрат 7, получится 49. Квадрат числа 9 равен 81. Таким образом, квадратный корень из 4 — это 2, из 49 — это 7, а из 81 — это 9.

Как правило, обучение этой теме в математике начинается именно с квадратных корней. Для того, чтобы сходу определять его, учащийся средней школы должен наизусть знать таблицу умножения. Тем, кто нетвердо знает эту таблицу, приходится пользоваться подсказками. Обычно процесс извлечения корневого квадрата из числа приводится в виде таблицы на обложках многих школьных тетрадей по математике.

Корни бывают следующих типов:

  • квадратные;
  • кубические (или так называемые третьей степени);
  • четвертой степени;
  • пятой степени.

И так далее. В качестве степени может выступать любое число.

Правила сложения

Для того чтобы успешно решить типовой пример, необходимо иметь в виду, что не все корневые числа можно складывать друг с другом. Чтобы их можно было сложить, их необходимо привести к единому образцу. Если это невозможно, значит, задача не имеет решения. Такие задачи тоже часто встречаются в учебниках математики в качестве своеобразной ловушки для учащихся.

Не разрешается сложение в заданиях, когда подкоренные выражения отличаются друг от друга. Это можно проиллюстрировать на наглядном примере:

  • перед учеником стоит задача: сложить квадратный корень из 4 и из 9;
  • неопытный ученик, не знающий правила, обычно пишет: «корень из 4 + корень из 9=корень из 13».
  • доказать, что этот способ решения неправильный, очень просто. Для этого нужно найти квадратный корень из 13 и проверить, верно ли решен пример;
  • с помощью микрокалькулятора можно определить, что он составляет примерно 3,6. Теперь осталось проверить решение;
  • корень из 4=2, а из 9=3;
  • Сумма чисел «два» и «три» равняется пяти. Таким образом, данный алгоритм решения можно считать неверным.
Читайте также:  Дневник ру через госуслуги есиа

Если корни имеют одинаковую степень, но разные числовые выражения, он выносится за скобки, а в скобки вносится сумма двух подкоренных выражений. Таким образом, он извлекается уже из этой суммы.

Алгоритм сложения

Для того чтобы правильно решить простейшую задачу, необходимо:

  1. Определить, что именно требуют сложения.
  2. Разобраться, можно ли складывать значения друг с другом, руководствуясь существующими в математике правилами.
  3. Если они не подлежат сложению, нужно трансформировать их таким образом, чтобы их можно было складывать.
  4. Осуществив все необходимые преобразования, необходимо выполнить сложение и записать готовый ответ. Производить сложение можно в уме или с помощью микрокалькулятора, в зависимости от сложности примера.

Что такое подобные корни

Чтобы правильно решить пример на сложение, необходимо, в первую очередь, подумать о том, как можно его упростить. Для этого нужно обладать базовыми знаниями о том, что такое подобие.

Подобными принято считать корни, у которых один и тот же показатель, а также одно и то же числовое выражение.

Умение определять подобные помогает быстро решать однотипные примеры на сложение, приводя их в упрощенный вид. Чтобы упростить типовой пример на сложение, необходимо:

  1. Найти подобные и выделить их в одну группу (или в несколько групп).
  2. Заново написать имеющийся пример таким образом, чтобы корни, которые имеют один и тот же показатель, шли четко друг за другом (это и называется «сгруппировать»).
  3. Далее следует еще раз написать выражение заново, на этот раз таким образом, чтобы подобные (у которых один и тот же показатель и одна и та же подкоренная цифра) тоже шли друг за другом.

После этого упрощенный пример обычно легко поддается решению.

Для того, чтобы правильно решить любой пример на сложение, необходимо четко представлять себе основные правила сложения, а также знать о том, что такое корень и каким он бывает.

Иногда такие задачи с первого взгляда выглядят очень сложно, но обычно они легко решаются путем группировки подобных. Самое главное — практика, и тогда ученик начнет «щелкать задачи, как орешки». Сложение корней — один из самых важных разделов математики, поэтому учителя должны отводить достаточно времени на его изучение.

Видео

Разобраться в уровнениях с квадратными корнями вам поможет это видео.

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

В начале урока мы повторим основные свойства квадратных корней, а затем рассмотрим несколько сложных примеров на упрощение выражений, содержащих квадратные корни.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Упрощение выражений»

Повторение свойств квадратных корней

Вкратце повторим теорию и напомним основные свойства квадратных корней.

Свойства квадратных корней:

1. , следовательно, ;

2. ;

3. ;

4. .

Примеры на упрощение выражений с корнями

Перейдем к примерам использования этих свойств.

Пример 1. Упростить выражение .

Решение. Для упрощения число 120 необходимо разложить на простые множители:

Читайте также:  Apple iphone или samsung galaxy

. Квадрат суммы раскроем по соответствующей формуле:

.

Пример 2. Упростить выражение .

Решение. Учтем, что данное выражение имеет смысл не при всех возможных значениях переменной, т. к. в данном выражении присутствуют квадратные корни и дроби, что приводит к «сужению» области допустимых значений. ОДЗ: ().

Приведем выражение в скобках к общему знаменателю и распишем числитель последней дроби как разность квадратов:

при.

Ответ. при.

Пример 3. Упростить выражение .

Решение. Видно, что вторая скобка числителя имеет неудобный вид и нуждается в упрощении, попробуем разложить ее на множители с помощью метода группировки.

. Для возможности выносить общий множитель мы упростили корни путем их разложения на множители. Подставим полученное выражение в исходную дробь:

. После сокращения дроби применяем формулу разности квадратов.

Пример на избавление от иррациональности

Пример 4. Освободиться от иррациональности (корней) в знаменателе: а) ; б) .

Решение. а) Для того чтобы избавиться от иррациональности в знаменателе, применяется стандартный метод домножения и числителя и знаменателя дроби на сопряженный к знаменателю множитель (такое же выражение, но с обратным знаком). Это делается для дополнения знаменателя дроби до разности квадратов, что позволяет избавиться от корней в знаменателе. Выполним этот прием в нашем случае:

.

б) выполним аналогичные действия:

.

Ответ.; .

Пример на доказательство и на выделение полного квадрата в сложном радикале

Пример 5. Докажите равенство .

Доказательство. Воспользуемся определением квадратного корня, из которого следует, что квадрат правого выражения должен быть равен подкоренному выражению:

. Раскроем скобки по формуле квадрата суммы:

, получили верное равенство.

Пример 6. Упростить выражение .

Решение. Указанное выражение принято называть сложным радикалом (корень под корнем). В данном примере необходимо догадаться выделить полный квадрат из подкоренного выражения. Для этого заметим, что из двух слагаемых является претендентом на роль удвоенного произведения в формуле квадрата разности (разности, т. к. присутствует минус). Распишем его в виде такого произведения: , тогда на роль одного из слагаемых полного квадрата претендует , а на роль второго – 1.

. Подставим это выражение под корень:

. Модуль раскрывается в таком виде, т. к. .

Ответ..

На этом занятии мы заканчиваем тему «Функция . Свойства квадратного корня», а на следующем уроке начинаем новую тему «Действительные числа».

Список литературы

1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-портал xenoid.ru (Источник).

2. Математическая школа (Источник).

3. Интернет-портал XReferat.Ru (Источник).

Домашнее задание

1. №357, 360, 372, 373, 382. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

2. Избавьтесь от иррациональности в знаменателе: а) , б) .

3. Упростите выражение: а) , б) .

4. Докажите тождество .

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Ссылка на основную публикацию
Как разблокировать айфон зная apple id
Пользователи популярных смартфонов от Apple часто ставят на гаджет пароль, чтобы повысить безопасность мобильного устройства и избежать неприятностей – кражи,...
Как поставить напоминалку на андроиде
Привет всем. Нужно ли вам напоминать о каких-либо событиях? Я думаю напоминания не помешают никому. В силу своей занятости или...
Как поставить пароль на покупку фильмов ростелеком
Интерактивное ТВ от Ростелеком предлагает абонентам огромное многообразие телеканалов различного содержания. Многие из них совершенно не рассчитаны на младшую аудиторию....
Как разблокировать домофон если отключили
Домофон — вещь нужная и полезная. Установленная в подъезде система отлично защищает жилище обывателей от проникновения посторонних людей. Второе преимущество...
Adblock detector