Как решать корень уравнения

Как решать корень уравнения

Уравнение – это равенство, которое справедливо не при любых значениях входящих в него букв, а только при некоторых. Так же можно сказать, что уравнение является равенством, содержащим неизвестные числа, обозначенные буквами.

Например, равенство 10 — x = 2 является уравнением, так как оно справедливо только при x = 8. Равенство x 2 = 49 это уравнение, справедливое при двух значениях x, а именно, при x = +7 и x = -7, так как (+7) 2 = 49 и (-7) 2 = 49.

Если вместо x подставить его значение, то уравнение превратится в тождество. Такие переменные, как x, которые только при определённых значениях обращают уравнение в тождество, называются неизвестными уравнения. Они обычно обозначаются последними буквами латинского алфавита x, y и z.

Любое уравнение имеет левую и правую части. Выражение, стоящее слева от знака =, называется левой частью уравнения, а стоящее справа – правой частью уравнения. Числа и алгебраические выражения, из которых состоит уравнение, называются членами уравнения:

Корни уравнения

Корень уравнения – это число, при подстановке которого в уравнение получается верное равенство. Уравнение может иметь всего один корень, может иметь несколько корней или не иметь корней вообще.

Например, корнем уравнения

является число 8, а у уравнения

два корня – +7 и -7.

Решить уравнение – значит, найти все его корни или доказать, что их нет.

Виды уравнений

Кроме числовых уравнений, подобных приведённым выше, где все известные величины обозначены числами, существуют ещё буквенные уравнения, в которые кроме букв, обозначающих неизвестные, входят ещё буквы, обозначающие известные (или предполагаемые известные) величины.

По числу неизвестных уравнения разделяются на уравнения с 1-м неизвестным, с 2-мя неизвестными, с 3-мя и более неизвестными.

7x + 2 = 35 — 2x – уравнение с одним неизвестным,
3x + y = 8x — 2y – уравнение с двумя неизвестными.

  • Как решать уравнения с корнями
  • Что такое корень уравнения
  • Как найти корни кубического уравнения

В отличие от других типов уравнений, например, квадратных или систем линейных уравнений, для решения уравнений с корнями, или точнее, иррациональных уравнений, не существует стандартного алгоритма. В каждом конкретном случае необходимо подобрать наиболее подходящий метод решения, исходя из «внешнего вида» и особенностей уравнения.

Возведение частей уравнения в одинаковую степень.

Чаще всего для решения уравнений с корнями (иррациональных уравнений) применяется возведение обеих частей уравнения в одну и ту же степень. Как правило, в степень, равную степени корня (в квадрат для корня квадратного, в куб для корня кубического). При этом следует иметь ввиду, что при возведении левой и правой части уравнения в четную степень у него могут появиться «лишние» корни. Поэтому, в этом случае следует проверять полученные корни путем подстановки их в уравнение. Особое внимание при решении уравнений с квадратными (четными) корнями следует уделить области допустимых значений переменной (ОДЗ). Иногда одной только оценки ОДЗ достаточно для решения или существенного «упрощения» уравнения.

Читайте также:  Видеоредактор простой и удобный бесплатный на русском

Пример. Решить уравнение:

Возводим обе части уравнения в квадрат:

(√(5х-16))²=(х-2)², откуда последовательно получаем:

Решая полученное квадратное уравнение, находим его корни:

Подставив оба найденных корня в исходное уравнение, получаем верное равенство. Следовательно оба числа являются решениями уравнения.

Метод введения новой переменной.

Иногда найти корни «уравнения с корнями» (иррационального уравнения) удобнее методом введения новых переменных. Фактически, суть этого метода сводится просто к более компактной записи решения, т.е. вместо того, чтобы каждый раз писать громоздкое выражение, его заменяют условным обозначением.

Пример. Решить уравнение: 2х+√х-3=0

Можно решить данное уравнение и возведением обеих частей в квадрат. Однако, сами вычисления при этом будут выглядеть довольно-таки громоздко. При введении новой переменной процесс решения получится намного элегантнее:

Введем новую переменную: у=√х

После чего получаем обыкновенное квадратное уравнение:

2у²+у-3=0, с переменной у.

Решив полученное уравнение, находим два корня:

подставляя найденные корни в выражение для новой переменной (у), получаем:

Так как значение квадратного корня не может быть отрицательным числом (если не затрагивать область комплексных чисел), то получаем единственное решение:

Уравнения, в которых под знаком корня содержится переменная, называт иррациональными.

Методы решения иррациональных уравнений, как правило, основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным уравнением, которое либо эквивалентно исходному иррациональному уравнению, либо является его следствием. Чаще всего обе части уравнения возводят в одну и ту же степень. При этом получается уравнение, являющееся следствием исходного.

При решении иррациональных уравнений необходимо учитывать следующее:

1) если показатель корня — четное число, то подкоренное выражение должно быть неотрицательно; при этом значение корня также является неотрицательным (опредедение корня с четным показателем степени);

2) если показатель корня — нечетное число, то подкоренное выражение может быть любым действительным числом; в этом случае знак корня совпадает со знаком подкоренного выражения.

Пример 1. Решить уравнение

Возведем обе части уравнения в квадрат.
x 2 — 3 = 1;
Перенесем -3 из левой части уравнения в правую и выполним приведение подобных слагаемых.
x 2 = 4;
Полученное неполное квадратное уравнение имеет два корня -2 и 2.

Читайте также:  Itools как сменить язык

Произведем проверку полученных корней, для этого произведем подстановку значений переменной x в исходное уравнение.
Проверка.
При x1 = -2 — истинно:
При x2 = -2— истинно.
Отсюда следует, что исходное иррациональное уравнение имеет два корня -2 и 2.

Пример 2. Решить уравнение .

Это уравнение можно решить по такой же методике как и в первом примере, но мы поступим иначе.

Найдем ОДЗ данного уравнения. Из определения квадратного корня следует, что в данном уравнении одновременно должны выполнятся два условия:

а) x — 90;

x9;

б) 1 — x0;

-x-1 ;

x1.

ОДЗ данного уранения: x.

Ответ: корней нет.

Пример 3. Решить уравнение=+ 2.

Нахождение ОДЗ в этом уравнении представляет собой достаточно трудную задачу. Возведем обе части уравнения в квадрат:
x 3 + 4x — 1 — 8= x 3 — 1 + 4+ 4x;
=0;
x1=1; x2=0.
Произведя проверку устанавливаем, что x2=0 лишний корень.
Ответ: x1=1.

Пример 4. Решить уравнение x =.

В этом примере ОДЗ найти легко. ОДЗ этого уравнения: x[-1;).

Возведем обе части этого уравнения в квадрат, в результате получим уравнение x 2 = x + 1. Корни этого уравнения:

x1 =

x2 =

Произвести проверку найденных корней трудно. Но, несмотря на то, что оба корня принадлежат ОДЗ утверждать, что оба корня являются корнями исходного уравнения нельзя. Это приведет к ошибке. В данном случае иррациональное уравнение равносильно совокупности двух неравенств и одного уравнения:

x + 10 и x0 и x 2 = x + 1, из которой следует, что отрицательный корень для иррационального уравнения является посторонним и его нужно отбросить.

Ответ:

Пример 5 . Решить уравнение+= 7.

Возведем обе части уравнения в квадрат и выполним приведение подобных членов, перенес слагаемых из одной части равенства в другую и умножение обеих частей на 0,5. В результате мы получим уравнение
= 12, (*) являющееся следствием исходного. Снова возведем обе части уравнения в квадрат. Получим уравнение (х + 5)(20 — х) = 144, являющееся следствием исходного. Полученное уравнение приводится к виду x 2 — 15x + 44 =0.

Это уравнение (также являющееся следствием исходного) имеет корни x1 = 4, х2 = 11. Оба корня, как показывает проверка, удовлетворяют исходному уравнению.

Замечание. При возведении уравнений в квадрат учащиеся нередко в уравнениях типа (*) производят перемножение подкоренных выражений, т. е. вместо уравнения= 12, пишут уравнение = 12. Это не приводит к ошибкам, поскольку уравнения являются следствиями уравнений. Следует, однако, иметь в виду, что в общем случае такое перемножение подкоренных выражений дает неравносильные уравнения.

Читайте также:  Как проверить действительность карты метро

В рассмотренных выше примерах можно было сначала перенести один из радикалов в правую часть уравнения. Тогда в левой части уравнения останется один радикал и после возведения обеих частей уравнения в квадрат в левой части уравнения получится рациональная функция. Такой прием (уединение радикала) довольно часто применяется при решении иррациональных уравнений.

Пример 6. Решить уравнение= 3.

Уединив первый радикал, получаем уравнение
=+ 3, равносильное исходному.

Возводя обе части этого уравнения в квадрат, получаем уравнение

x 2 + 5x + 2 = x 2 — 3x + 3 + 6, равносильное уравнению

4x — 5 = 3(*). Это уравнение является следствием исходного уравнения. Возводя обе части уравнения в квадрат, приходим к уравнению
16x 2 — 40x + 25 = 9(x 2 — Зх + 3), или

7x 2 — 13x — 2 = 0.

Это уравнение является следствием уравнения (*) (а значит, и исходного уравнения) и имеет корни. Первый корень x1 = 2 удовлетворяет исходному уравнению, а второй x2 =— не удовлетворяет.

Заметим, что если бы мы сразу, не уединив один из радикалов, возводили обе части исходного уравнения в квадрат нам бы пришлось выполнить довольно громозкие преобразования.

При решении иррациональных уравнений, кроме уединения радикалов используют и другие методы. Рассмотрим пример использования метода замены неизвестного (метод введения вспомогательной переменной).

Пример 7. Решить уравнение 2x 2 — 6x ++ 2 = 0.

Введем вспомогательную переменную. Пусть y =, где y0, тогда получим уравнение 2y 2 + y — 10 = 0;
y1 = 2; y2 = —. Второй корень не удовлетворяет условию y0.
Возвращаемся к x:
= 2;
x 2 — 3x + 6 = 4;
x 2 -3x + 2 = 0;
x1 = 1; x2 = 2. Проверкой устанавливаем, что оба корня являются корнями иисходного уравнения.
Ответ: x1 = 1; x2 = 2.

Пример 8. Решить уравнение+=

Положим= t, Тогда уравнение примет вид t +=откуда получаем следствие: 2t 2 — 5t + 2 = 0 Решая это квадратное уравнение, находим два корня: t1 = 2 t2 =. Задача сводится теперь к решению следующих двух уравнений:
= 2,(*)=(**)

Возводя обе части уравнения (*) в куб, получаем 12 — 2x = 8x — 8; x1 = 2.

Аналогично, решив (**), находим x2 =.

Оба найденных корня удовлетворяют исходному уравнению, так как в процессе решения мы использовали (кроме замены неизвестного) только преобразование вида [f(x) = g(x)][f n (x) = g n (x)], а при таком преобразовании, как было отмечено выше, получается равносильное уравнение.

Ответ: х1 = 2, x2 =.

Ссылка на основную публикацию
Как разблокировать айфон зная apple id
Пользователи популярных смартфонов от Apple часто ставят на гаджет пароль, чтобы повысить безопасность мобильного устройства и избежать неприятностей – кражи,...
Как поставить напоминалку на андроиде
Привет всем. Нужно ли вам напоминать о каких-либо событиях? Я думаю напоминания не помешают никому. В силу своей занятости или...
Как поставить пароль на покупку фильмов ростелеком
Интерактивное ТВ от Ростелеком предлагает абонентам огромное многообразие телеканалов различного содержания. Многие из них совершенно не рассчитаны на младшую аудиторию....
Как разблокировать домофон если отключили
Домофон — вещь нужная и полезная. Установленная в подъезде система отлично защищает жилище обывателей от проникновения посторонних людей. Второе преимущество...
Adblock detector