Как понять симметрична ли функция

Как понять симметрична ли функция

Прямая х=а является осью симметрии графика функции у=f(x) тогда и только тогда, когда для любого $xin D(f)$ выполняется равенство f(x)=f(2a-x).

Прямая х=а является осью симметрии графика функции f в том и только в том случае, когда для любого х из ее области определения выполняется равенство f(a+х)=f(a-х).

Точка (а, b) является центром симметрии графика функции у=f(x) тогда и только тогда, когда для любого $xin D(f)$ выполняется равенство f(x)+f(2а-х)=b.

Точка (а, b) является центром симметрии графика функции f в том и только в том случае, когда для любого х из ее области определения выполняется равенство f(a+х)+f(a-х)=b.

Пример 1: Сколько вертикальных осей симметрии может иметь график периодической функции?

Ответ: Если график функции f с периодом Т имеет ось симметрии х=а, то скорее всего — из геометрических соображений — осью симметрии будет и прямая х=а+Т. Но так как прямая х=с является осью симметрии графика функции у=f(x) тогда и только тогда, когда для любого $xin D(f)$ выполняется равенство f(x)=f(2с-х), то для прямой х=а+Т надо проверить выполнение равенства f(а+Т)=f(2а-а-Т), или f(a+Т)=f(aТ), a это равенство верно.

Так как периодов у периодической функции бесконечно много, то и осей симметрии бесконечно много, если, конечно, есть хотя бы одна.

Пример 2: График функции у=f(x) имеет вертикальную ось и центр симметрии. Что можно сказать о графике функции у=2f(x)-1?

Ответ: Так как график функции у=f(x) имеет вертикальную ось симметрии, например х=а, то для всякого х имеет место равенство f(a+х)=f(а-х), а тогда очевидно 2f(a+х)-1=2f(а-x)-1, так что функция у=2f(x)-1 имеет ту же ось симметрии. Если же график функции у=f(x) имеет центр симметрии, например, Q=(а, b), то для всякого х имеет место равенство f(а+х)+f(а-х)=2b, и в этом случае (2f(а+х)-1)+(2f(а-х)-1)=2b

Читайте также:  Как называется устройство для управления курсором
Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы дадим строгие определения четных и нечетных функций, рассмотрим их свойства и решим некоторые задачи. Важным свойством четной функции является симметричность графика функции относительно оси у, важным свойством нечетной функции является симметричность графика относительно точки начала координат. Также на уроке мы выработаем методику исследования функции на четность и нечетность и решим ряд задач.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Функции»

Тема урока, введение

В этом уроке будут даны строгие определения четных и нечетных функций, рассмотрены их свойства, решены некоторые задачи.

Основные определения

Определение 1: Функция называется четной, если для любого значения x из множества X выполняется равенство:

Определение 2: Функция называется нечетной, если для любого значения x из множества X выполняется равенство:

1. четная, т.к.

2. нечетная, т.к.

3. четная,

4. нечетная, .

Дадим развернутое определение четной функции.

Определение 3: Функцию называют четной, если выполнены два условия для всех

1. Область определения симметрична относительно нуля, т.е.

2.

Из определения вытекает важное свойство четной функции:

График четной функции симметричен относительно оси y (Рис. 1).

Дадим развернутое определение нечетной функции.

Определение 4: Функцию называют нечетной, если выполнены два условия для всех

1. Область определения симметрична относительно нуля, т.е.

2.

Из определения нечетной функции вытекает свойство: График нечетной функции симметричен относительно т. (0; 0) (Рис. 2).

Если функция не является ни четной, ни нечетной, то ее называют функцией общего вида.

Примеры

Пример 1. Определите вид функции

четная функция, ее график симметричен относительно оси y.

Пример 2. Определите вид функции

В точке функция не существует, а в точке существует. Область определения несимметрична относительно нуля, значит функция общего вида.

Читайте также:  Как делать репост истории в инстаграм

Пример 3.Определите вид функции

Обе точки выколотые, график и область определения симметричны относительно начала координат, функция четная.

Пример 4. Определите вид функции

рафик и область определения симметричны относительно начала координат, функция нечетная.

Пример 5. Определите вид функции

В точке с абсциссой 2 функция не существует, в точке с абсциссой -2 существует. Область определения несимметрична относительно нуля, это функция общего вида.

Пример 6. Определите вид функции

Область определения симметрична относительно нуля, функция нечетная.

Примеры на исследование функции

Рассмотрим примеры на свойства четных и нечетных функций.

Пример 7: Исследовать на четность функцию

,функция четная.

Возведем в квадрат обе части равенства. Тогда вместо уравнения получим систему:

Второе уравнение полученной системы – уравнение окружности с центром в т.(0; 0) радиусом 4. Но т.к. , графиком уравнения является верхняя полуокружность (Рис. 9).

График симметричен относительно оси y, поэтому функция четная.

Ответ: Функция четная.

Пример 8. Известно, что функция четная и убывает при Определите характер монотонности функции при

Нам известно, что функция убывает на луче . Раз она определена на луче и является четной, то она определена и на луче

График четной функции симметричен относительно оси y, т.е. функция возрастает на луче

В качестве примера изобразим график функции (Рис. 10).

Ответ: Функция возрастает при

Пример 9. Дана функция , где

Задайте так, чтобы функция являлась

Если функция четная, ее график симметричен относительно оси y, т.е. (Рис. 11).

Если функция нечетная, ее график симметричен относительно т. (0; 0), т.е. (Рис. 12).

Заключение, вывод

Мы рассмотрели определения и свойства четных и нечетных функций, решили некоторые типовые задачи На следующем уроке мы продолжим изучение свойств четных и нечетных функций.

Читайте также:  Как вытащить сломанный наушник из телефона

Список рекомендованной литературы

1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. – М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс : учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. — М., 2011. — 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

Рекомендованные ссылки на интернет-ресурсы

1. Раздел College.ru по математике (Источник).

2. Интернет-проект «Задачи» (Источник).

3. Образовательный портал «РЕШУ ЕГЭ» (Источник).

Рекомендованное домашнее задание

1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. № 275 – 278.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Ссылка на основную публикацию
Как пользоваться microsoft office access
Введение В современном мире человеку приходится сталкиваться с огромными массивами однородной информации. Эту информацию необходимо упорядочить каким-либо образом, обработать однотипными...
Как подключить вайфай к ноутбуку без провода
Сейчас многие научились сами настраивать сетевое оборудование. Это действительно нужно знать, ведь у каждого дома есть маршрутизатор. Поэтому давайте начнем...
Как подключить беспроводную мышь к компьютеру windows
Беспроводная мышь — это компактный манипулятор с поддержкой Wireless-соединения. В зависимости от используемого типа подключения может работать с компьютером или...
Как пользоваться steam link
Несколько лет назад американская компания Valve , знакомая многим по непотопляемому Steam и таким знаменитым сериям игр, как Half-Life, Team...
Adblock detector