Как поменять частоту тока

Как поменять частоту тока

Этот способ часто называют частотным регулированием. Он получил большое распространение, т.к. позволяет получить высокое качество регулирования, жесткие механические характеристики в широком диапазоне регулирования скорости вращения. Суть метода очевидна из уравнения скорости идеального холостого хода:

.

Для реализации этого метода необходим полупроводниковый преобразователь, позволяющий плавно и в широком диапазоне изменять частоту питающей сети. В настоящее время в качестве преобразователей применяются чаще всего тиристорные или транзисторные преобразователи частоты (использование синхронных или коллекторных генераторов в данном случае нецелесообразно — сложность регулирования, проблемы с коммутацией). Вместе с тем задача регулирования частоты не так проста [9].

Оказалось, что одновременно с изменением частоты питающей сети возникает необходимость изменять и напряжение на статоре двигателя . Как известно, приложенное напряжение уравновешивается ЭДС двигателя и падением напряжения на активном сопротивлении статора. Пренебрегая активным сопротивлением статора можно записать, что , но ЭДС:

,

, (5.14)

где: — постоянный коэффициент;

f1 – частота питающей сети;

Ф – магнитный поток;

— число витков обмотки.

Из последнего выражения мы видим, что изменение частоты f1 нарушает баланс между приложенным напряжением и ЭДС двигателя. Для того чтобы его сохранить, необходимо изменять магнитный поток. Учитывая нелинейность магнитной цепи, изменение магнитного потока приведет к нелинейному изменению тока статора. В итоге работа АД при изменении частоты питающей сети при неизменном напряжении питания окажется невозможной При уменьшении частоты питающей сети для сохранения постоянным магнитного потока необходимо одновременно снижать и приложенное к статору напряжение, то есть возникает необходимость двухканального управления АД. Таким образом, задача регулирования частоты вращения АД является задачей регулирования двух параметров: частоты питающей сети f1 и приложенного напряжения U1 (рис. 5.9).

Рис. 5.9. Функциональная схема преобразователя частоты со звеном постоянного тока: УВ- управляемый выпрямитель; И– инвертор; РН- регулятор напряжения; РЧ- регулятор частоты; З- задатчик

С помощью регулятора напряжения, воздействуя на управляемый выпрямитель, изменяем напряжение на статоре Д, а с помощью регулятора частоты, воздействуя на инвертор, изменяем частоту питающей сети.

Закон изменения напряжения привода при изменении частоты питающей сети вывел академик М.Н. Костенко, полагая, что перегрузочная способность Д во всем диапазоне изменения скоростей должна оставаться неизменной, то есть:

.

Пренебрегая активным сопротивлением фазы статора, уравнение максимального момента можно записать так:

. (5.15)

Учитывая, что реактивное сопротивление линейно зависит от частоты, можно записать: . (5.16)

Учитывая, что при неизменной перегрузочной способности отношение моментов при различных скоростях должно соответствовать отношению максимальных моментов:

,

.

В этом выражении:

и — статические моменты при работе механизма на скоростях соответствующих и ;

и — напряжения, подводимые к двигателю на тех же частотах.

Из этого выражения видно, что закон изменения напряжения при частотном управлении определяется характером изменения статического момента нагрузки в зависимости от скорости. Рассмотрим наиболее часто встречающиеся случаи.

1) Нагрузка с постоянным статическим моментом . Очевидно, что в этом случае:

=> . (5.17)

2) Момент нагрузки растет пропорционально скорости. При этом:

=> . (5.18)

3) Статический момент нагрузки пропорционален квадрату скорости. В этом случае:

=> . (5.19)

Наибольшее распространение получил первый случай, как самый простой. Преобразователи с функциональным блоком изменения напряжения, реализующим второй и третий закон, используются реже, как правило, в тех случаях, когда требования нагрузки к приводу высоки.

Читайте также:  Как удалить старые дрова

Достоинством частотного метода является широкий диапазон регулирования и высокое качество характеристик. Механические характеристики Д будут выглядеть следующим образом (рис. 5.10).

Рис. 5.10. Механические характеристики АД при

частотном методе регулирования скорости

При уменьшении частоты питающей сети реактивное сопротивление уменьшается и увеличивается влияние активного сопротивления, которым мы пренебрегаем. Это обуславливает некоторое уменьшение перегрузочной способности при низких частотах.

В частотных преобразованиях часто используют двухзонное регулирование. Вторая зона получается за счет увеличения частоты питающей сети. В этом случае имеем уменьшение критического момента, так как увеличить напряжение, пропорционально частоте, мы не можем, и перегрузочная способность снижается.

В рассмотренной системе мы изменяем напряжение для сохранения постоянным магнитного потока, т.е. задача стоит в поддержании постоянным магнитного потока (Ф = const). Если бы нам это удалось сделать непосредственно, мы бы получили лучшие характеристики, но решение задачи затрудняется сложностью измерения магнитного потока. Для его измерения необходимо расположить в воздушном зазоре двигателя несколько датчиков Холла, что довольно сложно и дорого. Либо можно измерить магнитный поток косвенно по изменению ЭДС, которая наводится в витках дополнительной обмотки статора. Но этот метод также неудобен.

На практике система стабилизации магнитного потока не нашла применения.

Для поддержания примерно постоянным магнитного потока целесообразно учесть падение напряжения в первичной цепи. Основную роль играет падение напряжения на активном сопротивлении статора. Для того чтобы учесть падение напряжения, вводят положительную обратную связь по току, которая позволяет скомпенсировать падение напряжения на активном сопротивлении статора R1 и тем самым обеспечивает более строгий закон изменения напряжения при регулировании скорости двигателя. Соответствующая схема управления называется схемой с IR – компенсацией.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 11336 — | 7600 — или читать все.

  • Как изменить частоту тока
  • Как измерить частоту
  • Как изменить частоту в колебательном контуре
  • Генератор переменного тока, конденсатор, катушка индуктивности, тестер

Подключите систему к источнику переменного тока, при этом ее активное сопротивление должно быть незначительным. Этот колебательный контур создаст в цепи собственную частоту, которая будет причиной появления емкостного и индуктивного сопротивления.
Чтобы найти ее значение:
1. Найдите произведение значений индуктивности и электроемкости, измеренных с помощью тестера.

2. Из значения, получившегося в пункте 1, извлеките квадратный корень.

3. Полученный результат умножьте на число 6,28.

4. Число 1 поделите на значение, полученное в пункте 3.

Наиболее популярным на сегодняшний день методом увеличения (или уменьшения) частоты тока является применение частотного преобразователя. Частотные преобразователи позволяют получить из однофазного или трехфазного переменного тока промышленной частоты (50 или 60 Гц) ток требуемой частоты, например от 1 до 800 Гц, для питания однофазных или трехфазных двигателей.

Наряду с электронными частотными преобразователями, с целью увеличения частоты тока, применяют и электроиндукционные частотные преобразователи, в которых например асинхронный двигатель с фазным ротором работает частично в режиме генератора. Еще есть умформеры — двигатели-генераторы, о которых также будет рассказано в данной статье.

Электронные преобразователи частоты

Электронные преобразователи частоты позволяют плавно регулировать скорость синхронных и асинхронных двигателей благодаря плавному повышению частоты на выходе преобразователя до заданного значения. Наиболее простой подход обеспечивается заданием постоянной характеристики V/f, а более прогрессивные решения используют векторное управление.

Читайте также:  Звук положенной трубки телефона

Частотные преобразователи, обычно, включают в себя выпрямитель, который преобразует переменный ток промышленной частоты в постоянный; после выпрямителя стоит инвертор, в простейшем виде — на базе ШИМ, который преобразует постоянное напряжение в переменный ток нагрузки, причем частота и амплитуда задаются уже пользователем, и эти параметры могут отличаться от сетевых параметров на входе в большую или в меньшую сторону.

Выходной блок электронного преобразователя частоты чаще всего представляет собой тиристорный или транзисторный мост, состоящий из четырех или из шести ключей, которые и формируют требуемый ток для питания нагрузки, в частности — электродвигателя. Для сглаживания помех в выходном напряжении, на выходе добавляют EMC-фильтр.

Как говорилось выше, электронный преобразователь частоты использует для своей работы в качестве ключей тиристоры или транзисторы. Для управления ключами применяется микропроцессорный модуль, служащий контроллером, и одновременно выполняющий ряд диагностических и защитных функций.

Между тем, частотные преобразователи бывают все таки двух классов: с непосредственной связью, и с промежуточным звеном постоянного тока. При выборе между этими двумя классами взвешивают достоинства и недостатки того и другого, и определяют целесообразность того или иного для решения насущной задачи.

С непосредственной связью

Преобразователи с непосредственной связью отличаются тем, что в них используется управляемый выпрямитель, в котором группы тиристоров поочередно отпираясь коммутируют нагрузку, например обмотки двигателя, прямо к питающей сети.

В результате на выходе получаются кусочки синусоид сетевого напряжения, а эквивалентная частота на выходе (для двигателя) становится меньше сетевой, в пределах 60% от нее, то есть от 0 до 36 Гц для 60 Гц входа.

Такие характеристики не позволяют в широких пределах варьировать параметры оборудования в промышленности, от того и спрос на данные решения низок. Кроме этого незапираемые тиристоры сложно управляются, стоимость схем становится выше, да и помех на выходе много, требуются компенсаторы, и как следствие габариты высокие, а КПД низкий.

С звеном постоянного тока

Гораздо лучше в этом отношении частотные преобразователи с ярко выраженным звеном постоянного тока, где сначала переменный сетевой ток выпрямляется, фильтруется, а затем снова схемой на электронных ключах преобразуется в переменный ток нужной частоты и амплитуды. Здесь частота может быть значительно выше. Безусловно, двойное преобразование несколько снижает КПД, зато выходные параметры по частоте как раз соответствуют требованиям потребителя.

Чтобы на обмотках двигателя получить чистый синус, используют схему инвертора, в котором напряжение нужной формы получается благодаря широтно-импульсной модуляции (ШИМ). Электронными ключами здесь служат запираемые тиристоры или IGBT-транзисторы.

Тиристоры выдерживают большие импульсные токи, по сравнению с транзисторами, поэтому все чаще прибегают именно к тиристорным схемам, как в преобразователях с непосредственной связью, так и в преобразователях с промежуточным звеном постоянного тока, КПД получается до 98%.

Справедливости ради отметим, что электронные преобразователи частоты для питающей сети являются нелинейной нагрузкой, и порождают в ней высшие гармоники, это ухудшает качество электроэнергии.

С целью преобразования электроэнергии из одной ее формы в другую, в частности — для повышения частоты тока без необходимости прибегать к электронным решениям, применяют так называемые умформеры — двигатели-генераторы. Такие машины функционируют подобно проводнику электроэнергии, однако на самом деле прямого преобразования электроэнергии, как например в трансформаторе или в электронном частотном преобразователе, как такового не происходит.

Читайте также:  Как сделать помпу для аквариума

Здесь доступны следующие возможности:

постоянный ток может быть преобразован в переменный более высокого напряжения и требуемой частоты;

постоянный ток может быть получен из переменного;

прямое механическое преобразование частоты с повышением или понижением оной;

получение трехфазного тока требуемой частоты из однофазного тока сетевой частоты.

В каноническом виде мотор-генератор представляет собой электродвигатель, вал которого напрямую соединен с генератором. На выходе генератора устанавливают стабилизирующее устройство для улучшения частотных и амплитудных параметров получаемой электроэнергии.

В некоторых моделях умформеров якорь содержит обмотки и моторные и генераторные, которые гальванически развязаны, и выводы которых соединены соответственно с коллектором и с выходными контактными кольцами.

В других вариантах встречаются общие обмотки для обоих токов, например для преобразования числа фаз коллектора с контактными кольцами нет, а просто от обмотки статора делаются отводы для каждой из выходных фаз. Так асинхронная машина преобразует однофазный ток в трехфазный (тождественно в принципе увеличению частоты).

Итак, мотор-генератор позволяет преобразовать род тока, напряжение, частоту, количество фаз. До 70-х годов в военной технике СССР использовались преобразователи данного типа, где они питали, в частности, устройства на лампах. Однофазные и трехфазные преобразователи питались постоянным напряжением 27 вольт, а на выходе получалось переменное напряжение 127 вольт 50 герц однофазное или 36 вольт 400 герц трехфазное.

Мощность таких умформеров достигала 4,5 кВА. Подобные машины использовались и в электровозах, где постоянное напряжение 50 вольт преобразовывалось в переменное 220 вольт частотой до 425 герц для питания люминесцентных ламп, и 127 вольт 50 герц для питания бритв пассажиров. Первые ЭВМ часто использовали для своего питания умформеры.

По сей день кое-где еще можно встретить умформеры: на троллейбусах, в трамваях, в электропоездах, где их устанавливали с целью получения низкого напряжения для питания цепей управления. Но нынче они уже вытеснены почти полностью полупроводниковыми решениями (на тиристорах и транзисторах).

Преобразователи типа мотор-генератор ценны рядом достоинств. Во-первых это надежная гальваническая развязка выходной и входной силовых цепей. Во-вторых, на выходе получается чистейший синус без помех, без шумов. Устройство очень просто по своей конструкции, от того и обслуживание довольно бесхитростно.

Это легкий способ получения трехфазного напряжения. Инерция ротора сглаживает броски тока при резком изменении параметров нагрузки. И конечно, здесь очень просто осуществлять рекуперацию электроэнергии.

Не обошлось и без недостатков. Умформеры имеют движущиеся части, от того и ресурс их ограничен. Масса, вес, обилие материалов, и как следствие — высокая стоимость. Шумная работа, вибрации. Необходимость в частой смазке подшипников, чистке коллекторов, замене щеток. КПД в пределах 70%.

Несмотря на недостатки, механические моторы-генераторы по сей день применяются в электроэнергетической отрасли для преобразования больших мощностей. В перспективе моторы-генераторы вполне могут помочь согласованию сетей с частотами 60 и 50 Гц, либо для обеспечения сетей с повышенными требованиями по качеству электроэнергии. Питание обмоток ротора машины в данном случае возможно от твердотельного преобразователя частоты небольшой мощности.

Ссылка на основную публикацию
Как пользоваться microsoft office access
Введение В современном мире человеку приходится сталкиваться с огромными массивами однородной информации. Эту информацию необходимо упорядочить каким-либо образом, обработать однотипными...
Как подключить вайфай к ноутбуку без провода
Сейчас многие научились сами настраивать сетевое оборудование. Это действительно нужно знать, ведь у каждого дома есть маршрутизатор. Поэтому давайте начнем...
Как подключить беспроводную мышь к компьютеру windows
Беспроводная мышь — это компактный манипулятор с поддержкой Wireless-соединения. В зависимости от используемого типа подключения может работать с компьютером или...
Как пользоваться steam link
Несколько лет назад американская компания Valve , знакомая многим по непотопляемому Steam и таким знаменитым сериям игр, как Half-Life, Team...
Adblock detector